Commit d2e250ce authored by quyuan's avatar quyuan

update ci

parent f51af219
# 工具脚本使用说明
### OCR Badcase Commands
- **Command without badcase output:**
`python ocr_badcase.py pdf_json_label_0306.json ocr_dataset.json json_files.zip ocr_overall base_data_ocr.json`
- **Command with badcase output:**
`python ocr_badcase.py pdf_json_label_0306.json ocr_dataset.json json_files.zip ocr_overall base_data_ocr.json --badcase_path ocr_badcase`
### Text Badcase Commands
- **Command without badcase output:**
`python text_badcase.py pdf_json_label_0306.json pdf_json_label_0229.json json_files.zip text_overall base_data_text.json`
- **Command with badcase output:**
` python text_badcase.py pdf_json_label_0306.json pdf_json_label_0229.json json_files.zip text_overall base_data_text.json --badcase_path text_badcase`
- **Command with upload to s3:**
- add the following arguments to the command
`--s3_bucket_name llm-process-pperf --s3_file_directory qa-validate/pdf-datasets/badcase --AWS_ACCESS_KEY Your AK --AWS_SECRET_KEY Your SK --END_POINT_URL Your Endpoint `
{
"accuracy": 1.0,
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0,
"pdf间的平均编辑距离": 133.10256410256412,
"pdf间的平均bleu": 0.28838311595434046,
"分段准确率": 0.07220216606498195,
"行内公式准确率": {
"accuracy": 0.004835727492533068,
"precision": 0.008790072388831437,
"recall": 0.010634970284641852,
"f1_score": 0.009624911535739562
},
"行内公式编辑距离": 1.6176470588235294,
"行内公式bleu": 0.17154724654721457,
"行间公式准确率": {
"accuracy": 0.08490566037735849,
"precision": 0.1836734693877551,
"recall": 0.13636363636363635,
"f1_score": 0.1565217391304348
},
"行间公式编辑距离": 113.22222222222223,
"行间公式bleu": 0.2531053359913409,
"丢弃文本准确率": {
"accuracy": 0.00035398230088495576,
"precision": 0.0006389776357827476,
"recall": 0.0007930214115781126,
"f1_score": 0.0007077140835102619
},
"丢弃文本标签准确率": {
"color_background_header_txt_block": {
"precision": 0.0,
"recall": 0.0,
"f1-score": 0.0,
"support": 41.0
},
"header": {
"precision": 0.0,
"recall": 0.0,
"f1-score": 0.0,
"support": 4.0
},
"footnote": {
"precision": 1.0,
"recall": 0.009708737864077669,
"f1-score": 0.019230769230769232,
"support": 103.0
},
"on-table": {
"precision": 0.0,
"recall": 0.0,
"f1-score": 0.0,
"support": 665.0
},
"rotate": {
"precision": 0.0,
"recall": 0.0,
"f1-score": 0.0,
"support": 63.0
},
"on-image": {
"precision": 0.0,
"recall": 0.0,
"f1-score": 0.0,
"support": 380.0
},
"micro avg": {
"precision": 1.0,
"recall": 0.0007961783439490446,
"f1-score": 0.0015910898965791568,
"support": 1256.0
}
},
"丢弃图片准确率": {
"accuracy": 0.0,
"precision": 0.0,
"recall": 0.0,
"f1_score": 0.0
},
"丢弃表格准确率": {
"accuracy": 0.0,
"precision": 0.0,
"recall": 0.0,
"f1_score": 0.0
}
}
\ No newline at end of file
{
"accuracy": 1.0,
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0,
"pdf间的平均编辑距离": 19.82051282051282,
"pdf间的平均bleu": 0.9002485609584511,
"阅读顺序编辑距离": 0.3176895306859206,
"分段准确率": 0.8989169675090253,
"行内公式准确率": {
"accuracy": 0.9782741738066095,
"precision": 0.9782741738066095,
"recall": 1.0,
"f1_score": 0.9890177880897139
},
"行内公式编辑距离": 0.0,
"行内公式bleu": 0.20340450120213166,
"行间公式准确率": {
"accuracy": 1.0,
"precision": 1.0,
"recall": 1.0,
"f1_score": 1.0
},
"行间公式编辑距离": 0.0,
"行间公式bleu": 0.3662262622386575,
"丢弃文本准确率": {
"accuracy": 0.867870036101083,
"precision": 0.9064856711915535,
"recall": 0.9532117367168914,
"f1_score": 0.9292616930807885
},
"丢弃文本标签准确率": {
"color_background_header_txt_block": {
"precision": 0.0,
"recall": 0.0,
"f1-score": 0.0,
"support": 41.0
},
"rotate": {
"precision": 1.0,
"recall": 0.9682539682539683,
"f1-score": 0.9838709677419355,
"support": 63.0
},
"footnote": {
"precision": 1.0,
"recall": 0.883495145631068,
"f1-score": 0.9381443298969072,
"support": 103.0
},
"header": {
"precision": 1.0,
"recall": 1.0,
"f1-score": 1.0,
"support": 4.0
},
"on-image": {
"precision": 0.9947643979057592,
"recall": 1.0,
"f1-score": 0.9973753280839895,
"support": 380.0
},
"on-table": {
"precision": 1.0,
"recall": 0.9443609022556391,
"f1-score": 0.97138437741686,
"support": 665.0
},
"micro avg": {
"precision": 0.9982847341337907,
"recall": 0.9267515923566879,
"f1-score": 0.9611890999174236,
"support": 1256.0
}
},
"丢弃图片准确率": {
"accuracy": 0.8666666666666667,
"precision": 0.9285714285714286,
"recall": 0.9285714285714286,
"f1_score": 0.9285714285714286
},
"丢弃表格准确率": {
"accuracy": 0,
"precision": 0,
"recall": 0,
"f1_score": 0
}
}
\ No newline at end of file
import zipfile
import os
import shutil
code_path = os.environ.get('GITHUB_WORKSPACE')
pdf_dev_path = "/home/quyuan/data"
pdf_res_path = "/home/quyuan/code/Magic-PDF/Magic-PDF/Magic-PDF/ci/magic-pdf"
def test_cli():
cmd = 'cd %s && export PYTHONPATH=. && find %s -type f -name "*.pdf" | xargs -I{} python magic_pdf/cli/magicpdf.py pdf-command --pdf {}' % (code_path, pdf_dev_path)
os.system(cmd)
for annotaion_name in os.listdir(os.join(pdf_dev_path, "output")):
if annotaion_name.endswith('.pdf'):
for pdf_res_path in os.listdir(pdf_res_path):
if ".md" in os.join(pdf_res_path, annotaion_name, "auto"):
prefix = annotaion_name.split('_')[-2]
if not os.path.exists(os.join(pdf_dev_path, prefix)):
os.makedirs(os.join(pdf_dev_path, prefix))
shutil.copy(os.join(pdf_res_path, annotaion_name, "auto", annotaion_name + ".md"), os.join(pdf_dev_path, prefix, annotaion_name + ".md"))
def calculate_score():
cmd = "cd %s && export PYTHONPATH=. && python tools/clean_photo.py --tool_name annotations --download_dir %s" % pdf_dev_path
os.system(cmd)
cmd = "cd %s && export PYTHONPATH=. && python tools/clean_photo.py --tool_name magicpdf --download_dir %s" % (pdf_dev_path)
os.system(cmd)
cmd = "cd %s && export PYTHONPATH=. && python tools/markdown_calculate.py --tool_name pdf-command --download_dir %s --results %s" % (pdf_dev_path, os.join(pdf_dev_path, "result.json"))
os.system(cmd)
def extrat_zip(zip_file_path, extract_to_path):
if zipfile.is_zipfile(zip_file_path):
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(extract_to_path)
print(f'Files extracted to {extract_to_path}')
else:
print(f'{zip_file_path} is not a zip file')
if __name__ == "__main__":
extrat_zip(os.join(pdf_dev_path, 'output.zip'), os.join(pdf_dev_path,'datasets'))
test_cli()
calculate_score()
\ No newline at end of file
import pypandoc
import re
import htmltabletomd
import os
import argparse
import zipfile
parser = argparse.ArgumentParser(description="get tool type")
parser.add_argument(
"--tool_name",
type=str,
required=True,
help="input tool name",
)
parser.add_argument(
"--download_dir",
type=str,
required=True,
help="input download dir",
)
args = parser.parse_args()
def clean_markdown_images(content):
pattern = re.compile(r'!\[[^\]]*\]\([^)]*\)', re.IGNORECASE)
cleaned_content = pattern.sub('', content)
return cleaned_content
def clean_ocrmath_photo(content):
pattern = re.compile(r'\\includegraphics\[.*?\]\{.*?\}', re.IGNORECASE)
cleaned_content = pattern.sub('', content)
return cleaned_content
def convert_html_table_to_md(html_table):
lines = html_table.strip().split('\n')
md_table = ''
if lines and '<tr>' in lines[0]:
in_thead = True
for line in lines:
if '<th>' in line:
cells = re.findall(r'<th>(.*?)</th>', line)
md_table += '| ' + ' | '.join(cells) + ' |\n'
in_thead = False
elif '<td>' in line and not in_thead:
cells = re.findall(r'<td>(.*?)</td>', line)
md_table += '| ' + ' | '.join(cells) + ' |\n'
md_table = md_table.rstrip() + '\n'
return md_table
def convert_latext_to_md(content):
tables = re.findall(r'\\begin\{tabular\}(.*?)\\end\{tabular\}', content, re.DOTALL)
placeholders = []
for table in tables:
placeholder = f"<!-- TABLE_PLACEHOLDER_{len(placeholders)} -->"
replace_str = f"\\begin{{tabular}}{table}cl\\end{{tabular}}"
content = content.replace(replace_str, placeholder)
try:
pypandoc.convert_text(replace_str, format="latex", to="md", outputfile="output.md", encoding="utf-8")
except:
markdown_string = replace_str
else:
markdown_string = open('output.md', 'r', encoding='utf-8').read()
placeholders.append((placeholder, markdown_string))
new_content = content
for placeholder, md_table in placeholders:
new_content = new_content.replace(placeholder, md_table)
# 写入文件
return new_content
def convert_htmltale_to_md(content):
tables = re.findall(r'<table>(.*?)</table>', content, re.DOTALL)
placeholders = []
for table in tables:
placeholder = f"<!-- TABLE_PLACEHOLDER_{len(placeholders)} -->"
content = content.replace(f"<table>{table}</table>", placeholder)
try:
convert_table = htmltabletomd.convert_table(table)
except:
convert_table = table
placeholders.append((placeholder,convert_table))
new_content = content
for placeholder, md_table in placeholders:
new_content = new_content.replace(placeholder, md_table)
# 写入文件
return new_content
def clean_data(prod_type, download_dir):
file_type = ["academic_literature", "atlas", "courseware", "colorful_textbook", "historical_documents", "notes", "ordinary_books", "ordinary_exam_paper", "ordinary_textbook", "research_report", "special_exam_paper"]
for filetype in file_type:
tgt_dir = os.path.join(download_dir, filetype, prod_type, "cleaned")
if not os.path.exists(tgt_dir):
os.makedirs(tgt_dir)
source_dir = os.path.join(download_dir, filetype, prod_type)
filenames = os.listdir(source_dir)
for filename in filenames:
if filename.endswith('.md'):
input_file = os.path.join(source_dir, filename)
output_file = os.path.join(tgt_dir, "cleaned_" + filename)
with open(input_file, 'r', encoding='utf-8') as fr:
content = fr.read()
new_content = convert_htmltale_to_md(content)
new_content = clean_markdown_images(new_content)
new_content = clean_ocrmath_photo(new_content)
new_content = convert_latext_to_md(new_content)
with open(output_file, 'w', encoding='utf-8') as fw:
fw.write(new_content)
if __name__ == '__main__':
tool_type = args.tool_name
download_dir = args.download_dir
clean_data(tool_type, download_dir)
from loguru import logger
import json
import os
from magic_pdf.config import s3_buckets, s3_clusters, s3_users
def get_bucket_configs_dict(buckets, clusters, users):
bucket_configs = {}
for s3_bucket in buckets.items():
bucket_name = s3_bucket[0]
bucket_config = s3_bucket[1]
cluster, user = bucket_config
cluster_config = clusters[cluster]
endpoint_key = "outside"
endpoints = cluster_config[endpoint_key]
endpoint = endpoints[0]
user_config = users[user]
# logger.info(bucket_name)
# logger.info(endpoint)
# logger.info(user_config)
bucket_config = [user_config["ak"], user_config["sk"], endpoint]
bucket_configs[bucket_name] = bucket_config
return bucket_configs
def write_json_to_home(my_dict):
# Convert dictionary to JSON
json_data = json.dumps(my_dict, indent=4, ensure_ascii=False)
home_dir = os.path.expanduser("~")
# Define the output file path
output_file = os.path.join(home_dir, "magic-pdf.json")
# Write JSON data to the output file
with open(output_file, "w") as f:
f.write(json_data)
# Print a success message
print(f"Dictionary converted to JSON and saved to {output_file}")
if __name__ == '__main__':
bucket_configs_dict = get_bucket_configs_dict(s3_buckets, s3_clusters, s3_users)
logger.info(bucket_configs_dict)
config_dict = {
"bucket_info": bucket_configs_dict,
"temp-output-dir": "/tmp"
}
write_json_to_home(config_dict)
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
import os
from Levenshtein import distance
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction, corpus_bleu
from nltk.tokenize import word_tokenize
import json
import re
import scoring
import argparse
parser = argparse.ArgumentParser(description="get directory")
parser.add_argument('--document_types',
nargs='+',
choices=["academic_literature", "atlas", "courseware", "colorful_textbook", "historical_documents", "notes", "ordinary_books", "ordinary_exam_paper", "ordinary_textbook", "research_report", "special_exam_paper"],
help='Choose one or more document_types',
default=["academic_literature", "atlas", "courseware", "colorful_textbook", "historical_documents", "notes", "ordinary_books", "ordinary_exam_paper", "ordinary_textbook", "research_report", "special_exam_paper"]
)
parser.add_argument(
"--tool_name",
type=str,
required=True,
help="tool name",
)
parser.add_argument(
"--download_dir",
type=str,
required=True,
help="input download dir",
)
parser.add_argument(
"--results",
type=str,
required=True,
help="results path(end with .json)",
)
args = parser.parse_args()
fw = open(args.results, 'w+', encoding='utf-8')
# 初始化列表来存储编辑距离和BLEU分数
class Scoring:
def __init__(self):
self.edit_distances = []
self.bleu_scores = []
self.sim_scores = []
self.filenames = []
self.score_dict = {}
self.anntion_cnt = 0
def simple_bleu_score(self, candidate, reference):
candidate_tokens = word_tokenize(candidate)
reference_tokens = word_tokenize(reference)
return sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=SmoothingFunction().method1)
def preprocess_string(self, s):
sub_enter = re.sub(r'\n+', '\n', s)
return re.sub(r' ', ' ', sub_enter)
def calculate_similarity(self, annotion, actual, tool_type):
class_dict = {}
edit_distances = []
bleu_scores = []
sim_scores = list()
total_file = 0
for filename in os.listdir(annotion):
if filename.endswith('.md') and not filename.startswith('.'): # 忽略隐藏文件
total_file = total_file + 1
# 读取A目录中的文件
with open(os.path.join(annotion, filename), 'r', encoding='utf-8') as file_a:
content_a = file_a.read()
self.anntion_cnt = self.anntion_cnt + 1
filepath_b = os.path.join(actual, filename)
if os.path.exists(filepath_b):
with open(filepath_b, 'r', encoding='utf-8') as file_b:
content_b = file_b.read()
self.filenames.append(filename)
# 计算编辑距离
edit_dist = distance(self.preprocess_string(content_b),self.preprocess_string(content_a)) / max(len(content_a), len(content_b))
self.edit_distances.append(edit_dist)
edit_distances.append(edit_dist)
#计算BLUE分数
bleu_score = self.simple_bleu_score(content_b, content_a)
bleu_scores.append(bleu_score)
self.bleu_scores.append(bleu_score)
#计算marker分数
score = scoring.score_text(content_b, content_a)
sim_scores.append(score)
self.sim_scores.append(score)
class_dict[filename] = {"edit_dist": edit_dist, "bleu_score": bleu_score, "sim_score": score}
self.score_dict[filename] = {"edit_dist": edit_dist, "bleu_score": bleu_score, "sim_score": score}
else:
print(f"File {filename} not found in actual directory.")
# 计算每类平均值
class_average_edit_distance = sum(edit_distances) / len(edit_distances) if edit_distances else 0
class_average_bleu_score = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0
class_average_sim_score = sum(sim_scores) / len(sim_scores) if sim_scores else 0
fw.write(json.dumps(class_dict, ensure_ascii=False) + "\n")
ratio = len(class_dict)/total_file
fw.write(f"{tool_type} extract ratio: {ratio}" + "\n")
fw.write(f"{tool_type} Average Levenshtein Distance: {class_average_edit_distance}" + "\n")
fw.write(f"{tool_type} Average BLEU Score: {class_average_bleu_score}" + "\n")
fw.write(f"{tool_type} Average Sim Score: {class_average_sim_score}" + "\n")
print (f"{tool_type} extract ratio: {ratio}")
print (f"{tool_type} Average Levenshtein Distance: {class_average_edit_distance}")
print (f"{tool_type} Average BLEU Score: {class_average_bleu_score}")
print (f"{tool_type} Average Sim Score: {class_average_sim_score}")
return self.score_dict
def summary_scores(self):
# 计算整体平均值
average_edit_distance = sum(self.edit_distances) / len(self.edit_distances) if self.edit_distances else 0
average_bleu_score = sum(self.bleu_scores) / len(self.bleu_scores) if self.bleu_scores else 0
average_sim_score = sum(self.sim_scores) / len(self.sim_scores) if self.sim_scores else 0
#self.fw.write(json.dumps(self.score_dict, ensure_ascii=False) + "\n")
fw.write(f"Overall extract cnt: {len(self.score_dict)/self.anntion_cnt}" + "\n")
fw.write(f"Overall Average Levenshtein Distance: {average_edit_distance}" + "\n")
fw.write(f"Overall Average BLEU Score: {average_bleu_score}" + "\n")
fw.write(f"Overall Average Marker Score: {average_sim_score}" + "\n")
print ("Overall extract ratio: ", len(self.score_dict)/self.anntion_cnt)
print (f"Overall Average Levenshtein Distance: {average_edit_distance}")
print (f"Overall Average BLEU Score: {average_bleu_score}")
print (f"Overall Average Marker Score: {average_sim_score}")
fw.close()
def calculate_similarity_total(self, tool_type, file_types, download_dir):
for file_type in file_types:
annotion = os.path.join(download_dir, file_type, "annotations", "cleaned")
actual = os.path.join(download_dir, file_type, tool_type, "cleaned")
self.calculate_similarity(annotion, actual, file_type)
if __name__ == "__main__":
file_types = list()
tool_type =args.tool_name
download_dir = args.download_dir
if args.document_types:
print("Selected types:", args.document_types)
for type_ in args.document_types:
file_types.append(type_)
else:
print("No types selected")
print(f"Type {file_types} is selected. Executing related operations...")
score = Scoring()
score.calculate_similarity_total(tool_type, file_types, download_dir)
score.summary_scores()
import json
import pandas as pd
import numpy as np
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import argparse
import os
from sklearn.metrics import classification_report
from sklearn import metrics
from datetime import datetime
import boto3
from botocore.exceptions import NoCredentialsError, ClientError
from io import TextIOWrapper
import zipfile
def process_equations_and_blocks(json_data, is_standard):
"""
处理JSON数据,提取公式、文本块、图片块和表格块的边界框和文本信息。
参数:
- json_data: 列表,包含标准文档或测试文档的JSON数据。
- is_standard: 布尔值,指示处理的数据是否为标准文档。
返回:
- 字典,包含处理后的数据。
"""
equations_bboxs = {"inline": [], "interline": []}
equations_texts = {"inline": [], "interline": []}
dropped_bboxs = {"text": [], "image": [], "table": []}
dropped_tags = {"text": []}
para_texts = []
para_nums = []
for i in json_data:
mid_json = pd.DataFrame(i).iloc[:,:-1] if is_standard else pd.DataFrame(i)
page_data = {
"equations_bboxs_list": {"inline": [], "interline": []},
"equations_texts_list": {"inline": [], "interline": []},
"dropped_bboxs_list": {"text": [], "image": [], "table": []},
"dropped_tags_list": {"text": []},
"para_texts_list": [],
"para_nums_list": []
}
for eq_type in ["inline", "interline"]:
for equations in mid_json.loc[f"{eq_type}_equations", :]:
bboxs = [eq['bbox'] for eq in equations]
texts = [eq.get('latex_text' if is_standard else 'content', '') for eq in equations]
page_data["equations_bboxs_list"][eq_type].append(bboxs)
page_data["equations_texts_list"][eq_type].append(texts)
equations_bboxs["inline"].append(page_data["equations_bboxs_list"]["inline"])
equations_bboxs["interline"].append(page_data["equations_bboxs_list"]["interline"])
equations_texts["inline"].append(page_data["equations_texts_list"]["inline"])
equations_texts["interline"].append(page_data["equations_texts_list"]["interline"])
# 提取丢弃的文本块信息
for dropped_text_blocks in mid_json.loc['droped_text_block',:]:
bboxs, tags = [], []
for block in dropped_text_blocks:
bboxs.append(block['bbox'])
tags.append(block.get('tag', 'None'))
page_data["dropped_bboxs_list"]["text"].append(bboxs)
page_data["dropped_tags_list"]["text"].append(tags)
dropped_bboxs["text"].append(page_data["dropped_bboxs_list"]["text"])
dropped_tags["text"].append(page_data["dropped_tags_list"]["text"])
# 同时处理删除的图片块和表格块
for block_type in ['image', 'table']:
# page_blocks_list = []
for blocks in mid_json.loc[f'droped_{block_type}_block', :]:
# 如果是标准数据,直接添加整个块的列表
if is_standard:
page_data["dropped_bboxs_list"][block_type].append(blocks)
# 如果是测试数据,检查列表是否非空,并提取每个块的边界框
else:
page_blocks = [block['bbox'] for block in blocks] if blocks else []
page_data["dropped_bboxs_list"][block_type].append(page_blocks)
# 将当前页面的块边界框列表添加到结果字典中
dropped_bboxs['image'].append(page_data["dropped_bboxs_list"]['image'])
dropped_bboxs['table'].append(page_data["dropped_bboxs_list"]['table'])
# 处理段落
for para_blocks in mid_json.loc['para_blocks', :]:
page_data["para_nums_list"].append(len(para_blocks)) # 计算段落数
for para_block in para_blocks:
if is_standard:
# 标准数据直接提取文本
page_data["para_texts_list"].append(para_block['text'])
else:
# 测试数据可能需要检查'content'是否存在
if 'spans' in para_block[0] and para_block[0]['spans'][0]['type'] == 'text':
page_data["para_texts_list"].append(para_block[0]['spans'][0].get('content', ''))
para_texts.append(page_data["para_texts_list"])
para_nums.append(page_data["para_nums_list"])
return {
"equations_bboxs": equations_bboxs,
"equations_texts": equations_texts,
"dropped_bboxs": dropped_bboxs,
"dropped_tags": dropped_tags,
"para_texts": para_texts,
"para_nums": para_nums
}
def bbox_match_indicator_general(test_bboxs_list, standard_bboxs_list):
"""
计算边界框匹配指标,支持掉落的表格、图像和文本块。
此版本的函数专注于计算基于边界框的匹配指标,而不涉及标签匹配逻辑。
参数:
- test_bboxs: 测试集的边界框列表,按页面组织。
- standard_bboxs: 标准集的边界框列表,按页面组织。
返回:
- 一个字典,包含准确度、精确度、召回率和F1分数。
"""
# 如果两个列表都完全为空,返回0值指标
if all(len(page) == 0 for page in test_bboxs_list) and all(len(page) == 0 for page in standard_bboxs_list):
return {'accuracy': 0, 'precision': 0, 'recall': 0, 'f1_score': 0}
matched_bbox = []
matched_standard_bbox = []
for test_page, standard_page in zip(test_bboxs_list, standard_bboxs_list):
test_page_bbox, standard_page_bbox = [], []
for standard_bbox in standard_page:
if len(standard_bbox) != 4:
continue
matched = False
for test_bbox in test_page:
if len(test_bbox) == 4 and bbox_offset(standard_bbox, test_bbox):
matched = True
break
test_page_bbox.append(int(matched))
standard_page_bbox.append(1)
# 后处理以处理多删情况,保持原逻辑不变
diff_num = len(test_page) + test_page_bbox.count(0) - len(standard_page)
if diff_num > 0:
test_page_bbox.extend([1] * diff_num)
standard_page_bbox.extend([0] * diff_num)
matched_bbox.extend(test_page_bbox)
matched_standard_bbox.extend(standard_page_bbox)
block_report = {
'accuracy': metrics.accuracy_score(matched_standard_bbox, matched_bbox),
'precision': metrics.precision_score(matched_standard_bbox, matched_bbox, zero_division=0),
'recall': metrics.recall_score(matched_standard_bbox, matched_bbox, zero_division=0),
'f1_score': metrics.f1_score(matched_standard_bbox, matched_bbox, zero_division=0)
}
return block_report
def bbox_offset(b_t, b_s):
"""
判断两个边界框(bounding box)之间的重叠程度是否符合给定的标准。
参数:
- b_t: 测试文档中的边界框(bbox),格式为(x1, y1, x2, y2),
其中(x1, y1)是左上角的坐标,(x2, y2)是右下角的坐标。
- b_s: 标准文档中的边界框(bbox),格式同上。
返回:
- True: 如果两个边界框的重叠面积与两个边界框合计面积的差的比例超过0.95,
表明它们足够接近。
- False: 否则,表示两个边界框不足够接近。
注意:
- 函数首先计算两个bbox的交集区域,如果这个区域的面积相对于两个bbox的面积差非常大,
则认为这两个bbox足够接近。
- 如果交集区域的计算结果导致无效区域(比如宽度或高度为负值),或者分母为0(即两个bbox完全不重叠),
则函数会返回False。
"""
# 分别提取两个bbox的坐标
x1_t, y1_t, x2_t, y2_t = b_t
x1_s, y1_s, x2_s, y2_s = b_s
# 计算两个bbox交集区域的坐标
x1 = max(x1_t, x1_s)
x2 = min(x2_t, x2_s)
y1 = max(y1_t, y1_s)
y2 = min(y2_t, y2_s)
# 如果计算出的交集区域有效,则计算其面积
if x2 > x1 and y2 > y1:
area_overlap = (x2 - x1) * (y2 - y1)
else:
# 交集区域无效,视为无重叠
area_overlap = 0
# 计算两个bbox的总面积,减去重叠部分避免重复计算
area_t = (x2_t - x1_t) * (y2_t - y1_t) + (x2_s - x1_s) * (y2_s - y1_s) - area_overlap
# 判断重叠面积是否符合标准
if area_t-area_overlap==0 or area_overlap/area_t>0.95:
return True
else:
return False
def Levenshtein_Distance(str1, str2):
"""
计算并返回两个字符串之间的Levenshtein编辑距离。
参数:
- str1: 字符串,第一个比较字符串。
- str2: 字符串,第二个比较字符串。
返回:
- int: str1和str2之间的Levenshtein距离。
方法:
- 使用动态规划构建一个矩阵(matrix),其中matrix[i][j]表示str1的前i个字符和str2的前j个字符之间的Levenshtein距离。
- 矩阵的初始值设定为边界情况,即一个字符串与空字符串之间的距离。
- 遍历矩阵填充每个格子的值,根据字符是否相等选择插入、删除或替换操作的最小代价。
"""
# 初始化矩阵,大小为(len(str1)+1) x (len(str2)+1),边界情况下的距离为i和j
matrix = [[i + j for j in range(len(str2) + 1)] for i in range(len(str1) + 1)]
# 遍历str1和str2的每个字符,更新矩阵中的值
for i in range(1, len(str1) + 1):
for j in range(1, len(str2) + 1):
# 如果当前字符相等,替换代价为0;否则为1
d = 0 if (str1[i - 1] == str2[j - 1]) else 1
# 更新当前位置的值为从str1[i]转换到str2[j]的最小操作数
matrix[i][j] = min(matrix[i - 1][j] + 1, # 删除操作
matrix[i][j - 1] + 1, # 插入操作
matrix[i - 1][j - 1] + d) # 替换操作
# 返回右下角的值,即str1和str2之间的Levenshtein距离
return matrix[len(str1)][len(str2)]
def equations_indicator(test_equations_bboxs, standard_equations_bboxs, test_equations, standard_equations):
"""
根据边界框匹配的方程计算编辑距离和BLEU分数。
参数:
- test_equations_bboxs: 测试方程的边界框列表。
- standard_equations_bboxs: 标准方程的边界框列表。
- test_equations: 测试方程的列表。
- standard_equations: 标准方程的列表。
返回:
- 一个元组,包含匹配方程的平均Levenshtein编辑距离和BLEU分数。
"""
# 初始化匹配方程列表
test_match_equations = []
standard_match_equations = []
# 匹配方程基于边界框重叠
for index, (test_bbox, standard_bbox) in enumerate(zip(test_equations_bboxs, standard_equations_bboxs)):
if not (test_bbox and standard_bbox): # 跳过任一空列表
continue
for i, sb in enumerate(standard_bbox):
for j, tb in enumerate(test_bbox):
if bbox_offset(sb, tb):
standard_match_equations.append(standard_equations[index][i])
test_match_equations.append(test_equations[index][j])
break # 找到第一个匹配后即跳出循环
# 使用Levenshtein距离和BLEU分数计算编辑距离
dis = [Levenshtein_Distance(a, b) for a, b in zip(test_match_equations, standard_match_equations) if a and b]
# 应用平滑函数计算BLEU分数
sm_func = SmoothingFunction().method1
bleu = [sentence_bleu([a.split()], b.split(), smoothing_function=sm_func) for a, b in zip(test_match_equations, standard_match_equations) if a and b]
# 计算平均编辑距离和BLEU分数,处理空列表情况
equations_edit = np.mean(dis) if dis else float('0.0')
equations_bleu = np.mean(bleu) if bleu else float('0.0')
return equations_edit, equations_bleu
def bbox_match_indicator_general(test_bboxs_list, standard_bboxs_list):
"""
计算边界框匹配指标,支持掉落的表格、图像和文本块。
此版本的函数专注于计算基于边界框的匹配指标,而不涉及标签匹配逻辑。
参数:
- test_bboxs: 测试集的边界框列表,按页面组织。
- standard_bboxs: 标准集的边界框列表,按页面组织。
返回:
- 一个字典,包含准确度、精确度、召回率和F1分数。
"""
# 如果两个列表都完全为空,返回0值指标
if all(len(page) == 0 for page in test_bboxs_list) and all(len(page) == 0 for page in standard_bboxs_list):
return {'accuracy': 0, 'precision': 0, 'recall': 0, 'f1_score': 0}
matched_bbox = []
matched_standard_bbox = []
for test_page, standard_page in zip(test_bboxs_list, standard_bboxs_list):
test_page_bbox, standard_page_bbox = [], []
for standard_bbox in standard_page:
if len(standard_bbox) != 4:
continue
matched = False
for test_bbox in test_page:
if len(test_bbox) == 4 and bbox_offset(standard_bbox, test_bbox):
matched = True
break
test_page_bbox.append(int(matched))
standard_page_bbox.append(1)
# 后处理以处理多删情况,保持原逻辑不变
diff_num = len(test_page) + test_page_bbox.count(0) - len(standard_page)
if diff_num > 0:
test_page_bbox.extend([1] * diff_num)
standard_page_bbox.extend([0] * diff_num)
matched_bbox.extend(test_page_bbox)
matched_standard_bbox.extend(standard_page_bbox)
block_report = {
'accuracy': metrics.accuracy_score(matched_standard_bbox, matched_bbox),
'precision': metrics.precision_score(matched_standard_bbox, matched_bbox, zero_division=0),
'recall': metrics.recall_score(matched_standard_bbox, matched_bbox, zero_division=0),
'f1_score': metrics.f1_score(matched_standard_bbox, matched_bbox, zero_division=0)
}
return block_report
def bbox_match_indicator_dropped_text_block(test_dropped_text_bboxs, standard_dropped_text_bboxs, standard_dropped_text_tag, test_dropped_text_tag):
"""
计算丢弃文本块的边界框匹配相关指标,包括准确率、精确率、召回率和F1分数,
同时也计算文本块标签的匹配指标。
参数:
- test_dropped_text_bboxs: 测试集的丢弃文本块边界框列表
- standard_dropped_text_bboxs: 标准集的丢弃文本块边界框列表
- standard_dropped_text_tag: 标准集的丢弃文本块标签列表
- test_dropped_text_tag: 测试集的丢弃文本块标签列表
返回:
- 一个包含边界框匹配指标和文本块标签匹配指标的元组
"""
test_text_bbox, standard_text_bbox = [], []
test_tag, standard_tag = [], []
for index, (test_page, standard_page) in enumerate(zip(test_dropped_text_bboxs, standard_dropped_text_bboxs)):
# 初始化每个页面的结果列表
test_page_tag, standard_page_tag = [], []
test_page_bbox, standard_page_bbox = [], []
for i, standard_bbox in enumerate(standard_page):
matched = False
for j, test_bbox in enumerate(test_page):
if bbox_offset(standard_bbox, test_bbox):
# 匹配成功,记录标签和边界框匹配结果
matched = True
test_page_tag.append(test_dropped_text_tag[index][j])
test_page_bbox.append(1)
break
if not matched:
# 未匹配,记录'None'和边界框未匹配结果
test_page_tag.append('None')
test_page_bbox.append(0)
# 标准边界框和标签总是被视为匹配的
standard_page_tag.append(standard_dropped_text_tag[index][i])
standard_page_bbox.append(1)
# 处理可能的多删情况
handle_multi_deletion(test_page, test_page_tag, test_page_bbox, standard_page_tag, standard_page_bbox)
# 合并当前页面的结果到整体结果中
test_tag.extend(test_page_tag)
standard_tag.extend(standard_page_tag)
test_text_bbox.extend(test_page_bbox)
standard_text_bbox.extend(standard_page_bbox)
# 计算和返回匹配指标
text_block_report = {
'accuracy': metrics.accuracy_score(standard_text_bbox, test_text_bbox),
'precision': metrics.precision_score(standard_text_bbox, test_text_bbox, zero_division=0),
'recall': metrics.recall_score(standard_text_bbox, test_text_bbox, zero_division=0),
'f1_score': metrics.f1_score(standard_text_bbox, test_text_bbox, zero_division=0)
}
# 计算和返回标签匹配指标
text_block_tag_report = classification_report(y_true=standard_tag, y_pred=test_tag, labels=list(set(standard_tag) - {'None'}), output_dict=True, zero_division=0)
del text_block_tag_report["macro avg"]
del text_block_tag_report["weighted avg"]
return text_block_report, text_block_tag_report
def handle_multi_deletion(test_page, test_page_tag, test_page_bbox, standard_page_tag, standard_page_bbox):
"""
处理多删情况,即测试页面的边界框或标签数量多于标准页面。
"""
excess_count = len(test_page) + test_page_bbox.count(0) - len(standard_page_tag)
if excess_count > 0:
# 对于多出的项,将它们视为正确匹配的边界框,但标签视为'None'
test_page_bbox.extend([1] * excess_count)
standard_page_bbox.extend([0] * excess_count)
test_page_tag.extend(['None'] * excess_count)
standard_page_tag.extend(['None'] * excess_count)
def consolidate_data(test_data, standard_data, key_path):
"""
Consolidates data from test and standard datasets based on the provided key path.
:param test_data: Dictionary containing the test dataset.
:param standard_data: Dictionary containing the standard dataset.
:param key_path: List of keys leading to the desired data within the dictionaries.
:return: List containing all items from both test and standard data at the specified key path.
"""
# Initialize an empty list to hold the consolidated data
overall_data_standard = []
overall_data_test = []
# Helper function to recursively navigate through the dictionaries based on the key path
def extract_data(source_data, keys):
for key in keys[:-1]:
source_data = source_data.get(key, {})
return source_data.get(keys[-1], [])
for data in extract_data(standard_data, key_path):
# 假设每个 single_table_tags 已经是一个列表,直接将它的元素添加到总列表中
overall_data_standard.extend(data)
for data in extract_data(test_data, key_path):
overall_data_test.extend(data)
# Extract and extend the overall data list with items from both test and standard datasets
return overall_data_standard, overall_data_test
def overall_calculate_metrics(inner_merge, json_test, json_standard,standard_exist, test_exist):
"""
计算整体的指标,包括准确率、精确率、召回率、F1值、平均编辑距离、平均BLEU得分、分段准确率、公式准确率、公式编辑距离、公式BLEU、丢弃文本准确率、丢弃文本标签准确率、丢弃图片准确率、丢弃表格准确率等。
Args:
inner_merge (dict): 包含merge信息的字典,包括pass_label和id等信息。
json_test (dict): 测试集的json数据。
json_standard (dict): 标准集的json数据。
standard_exist (list): 标准集中存在的id列表。
test_exist (list): 测试集中存在的id列表。
Returns:
dict: 包含整体指标值的字典。
"""
process_data_standard = process_equations_and_blocks(json_standard, is_standard=True)
process_data_test = process_equations_and_blocks(json_test, is_standard=False)
overall_report = {}
overall_report['accuracy']=metrics.accuracy_score(standard_exist,test_exist)
overall_report['precision']=metrics.precision_score(standard_exist,test_exist)
overall_report['recall']=metrics.recall_score(standard_exist,test_exist)
overall_report['f1_score']=metrics.f1_score(standard_exist,test_exist)
overall_report
test_para_text = np.asarray(process_data_test['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
standard_para_text = np.asarray(process_data_standard['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
ids_yes = inner_merge['id'][inner_merge['pass_label'] == 'yes'].tolist()
pdf_dis = {}
pdf_bleu = {}
# 对pass_label为'yes'的数据计算编辑距离和BLEU得分
for idx,(a, b, id) in enumerate(zip(test_para_text, standard_para_text, ids_yes)):
a1 = ''.join(a)
b1 = ''.join(b)
pdf_dis[id] = Levenshtein_Distance(a, b)
pdf_bleu[id] = sentence_bleu([a1], b1)
overall_report['pdf间的平均编辑距离'] = np.mean(list(pdf_dis.values()))
overall_report['pdf间的平均bleu'] = np.mean(list(pdf_bleu.values()))
# Consolidate equations bboxs inline
overall_equations_bboxs_inline_standard,overall_equations_bboxs_inline_test = consolidate_data(process_data_test, process_data_standard, ["equations_bboxs", "inline"])
# # Consolidate equations texts inline
overall_equations_texts_inline_standard,overall_equations_texts_inline_test = consolidate_data(process_data_test, process_data_standard, ["equations_texts", "inline"])
# Consolidate equations bboxs interline
overall_equations_bboxs_interline_standard,overall_equations_bboxs_interline_test = consolidate_data(process_data_test, process_data_standard, ["equations_bboxs", "interline"])
# Consolidate equations texts interline
overall_equations_texts_interline_standard,overall_equations_texts_interline_test = consolidate_data(process_data_test, process_data_standard, ["equations_texts", "interline"])
overall_dropped_bboxs_text_standard,overall_dropped_bboxs_text_test = consolidate_data(process_data_test, process_data_standard, ["dropped_bboxs","text"])
overall_dropped_tags_text_standard,overall_dropped_tags_text_test = consolidate_data(process_data_test, process_data_standard, ["dropped_tags","text"])
overall_dropped_bboxs_image_standard,overall_dropped_bboxs_image_test = consolidate_data(process_data_test, process_data_standard, ["dropped_bboxs","image"])
overall_dropped_bboxs_table_standard,overall_dropped_bboxs_table_test=consolidate_data(process_data_test, process_data_standard,["dropped_bboxs","table"])
para_nums_test = process_data_test['para_nums']
para_nums_standard=process_data_standard['para_nums']
overall_para_nums_standard = [item for sublist in para_nums_standard for item in (sublist if isinstance(sublist, list) else [sublist])]
overall_para_nums_test = [item for sublist in para_nums_test for item in (sublist if isinstance(sublist, list) else [sublist])]
test_para_num=np.array(overall_para_nums_test)
standard_para_num=np.array(overall_para_nums_standard)
acc_para=np.mean(test_para_num==standard_para_num)
overall_report['分段准确率'] = acc_para
# 行内公式准确率和编辑距离、bleu
overall_report['行内公式准确率'] = bbox_match_indicator_general(
overall_equations_bboxs_inline_test,
overall_equations_bboxs_inline_standard)
overall_report['行内公式编辑距离'], overall_report['行内公式bleu'] = equations_indicator(
overall_equations_bboxs_inline_test,
overall_equations_bboxs_inline_standard,
overall_equations_texts_inline_test,
overall_equations_texts_inline_standard)
# 行间公式准确率和编辑距离、bleu
overall_report['行间公式准确率'] = bbox_match_indicator_general(
overall_equations_bboxs_interline_test,
overall_equations_bboxs_interline_standard)
overall_report['行间公式编辑距离'], overall_report['行间公式bleu'] = equations_indicator(
overall_equations_bboxs_interline_test,
overall_equations_bboxs_interline_standard,
overall_equations_texts_interline_test,
overall_equations_texts_interline_standard)
# 丢弃文本准确率,丢弃文本标签准确率
overall_report['丢弃文本准确率'], overall_report['丢弃文本标签准确率'] = bbox_match_indicator_dropped_text_block(
overall_dropped_bboxs_text_test,
overall_dropped_bboxs_text_standard,
overall_dropped_tags_text_standard,
overall_dropped_tags_text_test)
# 丢弃图片准确率
overall_report['丢弃图片准确率'] = bbox_match_indicator_general(
overall_dropped_bboxs_image_test,
overall_dropped_bboxs_image_standard)
# 丢弃表格准确率
overall_report['丢弃表格准确率'] = bbox_match_indicator_general(
overall_dropped_bboxs_table_test,
overall_dropped_bboxs_table_standard)
return overall_report
def calculate_metrics(inner_merge, json_test, json_standard, json_standard_origin):
"""
计算指标
"""
# 创建ID到file_id的映射
id_to_file_id_map = pd.Series(json_standard_origin.file_id.values, index=json_standard_origin.id).to_dict()
# 处理标准数据和测试数据
process_data_standard = process_equations_and_blocks(json_standard, is_standard=True)
process_data_test = process_equations_and_blocks(json_test, is_standard=False)
# 从inner_merge中筛选出pass_label为'yes'的数据
test_para_text = np.asarray(process_data_test['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
standard_para_text = np.asarray(process_data_standard['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
ids_yes = inner_merge['id'][inner_merge['pass_label'] == 'yes'].tolist()
pdf_dis = {}
pdf_bleu = {}
# 对pass_label为'yes'的数据计算编辑距离和BLEU得分
for idx, (a, b, id) in enumerate(zip(test_para_text, standard_para_text, ids_yes)):
a1 = ''.join(a)
b1 = ''.join(b)
pdf_dis[id] = Levenshtein_Distance(a, b)
pdf_bleu[id] = sentence_bleu([a1], b1)
result_dict = {}
acc_para=[]
# 对所有数据计算其他指标
for index, id_value in enumerate(inner_merge['id'].tolist()):
result = {}
# 增加file_id到结果中
file_id = id_to_file_id_map.get(id_value, "Unknown")
result['file_id'] = file_id
# 根据id判断是否需要计算pdf_dis和pdf_bleu
if id_value in ids_yes:
result['pdf_dis'] = pdf_dis[id_value]
result['pdf_bleu'] = pdf_bleu[id_value]
# 计算分段准确率
single_test_para_num = np.array(process_data_test['para_nums'][index])
single_standard_para_num = np.array(process_data_standard['para_nums'][index])
acc_para.append(np.mean(single_test_para_num == single_standard_para_num))
result['分段准确率'] = acc_para[index]
# 行内公式准确率和编辑距离、bleu
result['行内公式准确率'] = bbox_match_indicator_general(
process_data_test["equations_bboxs"]["inline"][index],
process_data_standard["equations_bboxs"]["inline"][index])
result['行内公式编辑距离'], result['行内公式bleu'] = equations_indicator(
process_data_test["equations_bboxs"]["inline"][index],
process_data_standard["equations_bboxs"]["inline"][index],
process_data_test["equations_texts"]["inline"][index],
process_data_standard["equations_texts"]["inline"][index])
# 行间公式准确率和编辑距离、bleu
result['行间公式准确率'] = bbox_match_indicator_general(
process_data_test["equations_bboxs"]["interline"][index],
process_data_standard["equations_bboxs"]["interline"][index])
result['行间公式编辑距离'], result['行间公式bleu'] = equations_indicator(
process_data_test["equations_bboxs"]["interline"][index],
process_data_standard["equations_bboxs"]["interline"][index],
process_data_test["equations_texts"]["interline"][index],
process_data_standard["equations_texts"]["interline"][index])
# 丢弃文本准确率,丢弃文本标签准确率
result['丢弃文本准确率'], result['丢弃文本标签准确率'] = bbox_match_indicator_dropped_text_block(
process_data_test["dropped_bboxs"]["text"][index],
process_data_standard["dropped_bboxs"]["text"][index],
process_data_standard["dropped_tags"]["text"][index],
process_data_test["dropped_tags"]["text"][index])
# 丢弃图片准确率
result['丢弃图片准确率'] = bbox_match_indicator_general(
process_data_test["dropped_bboxs"]["image"][index],
process_data_standard["dropped_bboxs"]["image"][index])
# 丢弃表格准确率
result['丢弃表格准确率'] = bbox_match_indicator_general(
process_data_test["dropped_bboxs"]["table"][index],
process_data_standard["dropped_bboxs"]["table"][index])
# 将结果存入result_dict
result_dict[id_value] = result
return result_dict
def check_json_files_in_zip_exist(zip_file_path, standard_json_path_in_zip, test_json_path_in_zip):
"""
检查ZIP文件中是否存在指定的JSON文件
"""
with zipfile.ZipFile(zip_file_path, 'r') as z:
# 获取ZIP文件中所有文件的列表
all_files_in_zip = z.namelist()
# 检查标准文件和测试文件是否都在ZIP文件中
if standard_json_path_in_zip not in all_files_in_zip or test_json_path_in_zip not in all_files_in_zip:
raise FileNotFoundError("One or both of the required JSON files are missing from the ZIP archive.")
def read_json_files_from_streams(standard_file_stream, test_file_stream):
"""
从文件流中读取JSON文件内容
"""
pdf_json_standard = [json.loads(line) for line in standard_file_stream]
pdf_json_test = [json.loads(line) for line in test_file_stream]
json_standard_origin = pd.DataFrame(pdf_json_standard)
json_test_origin = pd.DataFrame(pdf_json_test)
return json_standard_origin, json_test_origin
def read_json_files_from_zip(zip_file_path, standard_json_path_in_zip, test_json_path_in_zip):
"""
从ZIP文件中读取两个JSON文件并返回它们的DataFrame
"""
with zipfile.ZipFile(zip_file_path, 'r') as z:
with z.open(standard_json_path_in_zip) as standard_file_stream, \
z.open(test_json_path_in_zip) as test_file_stream:
standard_file_text_stream = TextIOWrapper(standard_file_stream, encoding='utf-8')
test_file_text_stream = TextIOWrapper(test_file_stream, encoding='utf-8')
json_standard_origin, json_test_origin = read_json_files_from_streams(
standard_file_text_stream, test_file_text_stream
)
return json_standard_origin, json_test_origin
def merge_json_data(json_test_df, json_standard_df):
"""
基于ID合并测试和标准数据集,并返回合并后的数据及存在性检查结果。
参数:
- json_test_df: 测试数据的DataFrame。
- json_standard_df: 标准数据的DataFrame。
返回:
- inner_merge: 内部合并的DataFrame,包含匹配的数据行。
- standard_exist: 标准数据存在性的Series。
- test_exist: 测试数据存在性的Series。
"""
test_data = json_test_df[['id', 'mid_json']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
standard_data = json_standard_df[['id', 'mid_json', 'pass_label']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
outer_merge = pd.merge(test_data, standard_data, on='id', how='outer')
outer_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']
standard_exist = outer_merge.standard_mid_json.notnull()
test_exist = outer_merge.test_mid_json.notnull()
inner_merge = pd.merge(test_data, standard_data, on='id', how='inner')
inner_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']
return inner_merge, standard_exist, test_exist
def generate_filename(base_path):
"""
生成带有当前时间戳的输出文件名。
参数:
- base_path: 基础路径和文件名前缀。
返回:
- 带有当前时间戳的完整输出文件名。
"""
current_time = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
return f"{base_path}_{current_time}.json"
def save_results(data_dict, file_path):
"""
将数据字典保存为JSON文件至指定路径。
参数:
- data_dict: 包含数据的字典。
- file_path: 结果文件的保存路径,包括文件名。
"""
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(data_dict, f, ensure_ascii=False, indent=4)
print(f"结果已经保存到文件:{file_path}")
def upload_to_s3(file_path, bucket_name, s3_directory, AWS_ACCESS_KEY, AWS_SECRET_KEY, END_POINT_URL):
"""
上传文件到Amazon S3
"""
# 创建S3客户端
s3 = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_SECRET_KEY, endpoint_url=END_POINT_URL)
try:
# 从文件路径中提取文件名
file_name = os.path.basename(file_path)
# 创建S3对象键,将s3_directory和file_name连接起来
s3_object_key = f"{s3_directory}/{file_name}" # 使用斜杠直接连接
# 上传文件到S3
s3.upload_file(file_path, bucket_name, s3_object_key)
print(f"文件 {file_path} 成功上传到S3存储桶 {bucket_name} 中的目录 {s3_directory},文件名为 {file_name}")
except FileNotFoundError:
print(f"文件 {file_path} 未找到,请检查文件路径是否正确。")
except NoCredentialsError:
print("无法找到AWS凭证,请确认您的AWS访问密钥和密钥ID是否正确。")
except ClientError as e:
print(f"上传文件时发生错误:{e}")
def compare_edit_distance(json_file, overall_report):
with open(json_file, 'r',encoding='utf-8') as f:
json_data = json.load(f)
json_edit_distance = json_data['pdf间的平均编辑距离']
if overall_report['pdf间的平均编辑距离'] > json_edit_distance:
return 0
else:
return 1
def main(standard_file, test_file, zip_file, overall_path, base_data_path, badcase_path=None, s3_bucket_name=None, s3_file_directory=None,
aws_access_key=None, aws_secret_key=None, end_point_url=None):
"""
主函数,执行整个评估流程。
参数:
- standard_file: 标准文件的路径。
- test_file: 测试文件的路径。
- zip_file: 压缩包的路径的路径。
- badcase_path: badcase文件的基础路径和文件名前缀(可选)。
- overall_path: overall文件的基础路径和文件名前缀。
- base_data_path: 基础数据路径。
- s3_bucket_name: S3桶名称(可选)。
- s3_file_directory: S3上的文件保存目录(可选)。
- AWS_ACCESS_KEY, AWS_SECRET_KEY, END_POINT_URL: AWS访问凭证和端点URL(可选)。
"""
# 检查文件是否存在
check_json_files_in_zip_exist(zip_file, standard_file, test_file)
# 读取JSON文件内容
json_standard_origin, json_test_origin = read_json_files_from_zip(zip_file, standard_file, test_file)
# 合并JSON数据
inner_merge, standard_exist, test_exist = merge_json_data(json_test_origin, json_standard_origin)
# 计算总体指标
overall_report_dict = overall_calculate_metrics(inner_merge, inner_merge['test_mid_json'], inner_merge['standard_mid_json'], standard_exist, test_exist)
# 生成带时间戳的输出文件名
if badcase_path:
badcase_file = generate_filename(badcase_path)
result_dict = result_dict = calculate_metrics(inner_merge, inner_merge['test_mid_json'], inner_merge['standard_mid_json'], json_standard_origin)
save_results(result_dict, badcase_file)
overall_file = generate_filename(overall_path)
save_results(overall_report_dict, overall_file)
result = compare_edit_distance(base_data_path, overall_report_dict)
if all([s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url]):
try:
if badcase_path:
upload_to_s3(badcase_file, s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url)
upload_to_s3(overall_file, s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url)
except Exception as e:
print(f"上传到S3时发生错误: {e}")
print(result)
assert result == 1
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="主函数,执行整个评估流程。")
parser.add_argument('standard_file', type=str, help='标准文件的路径。')
parser.add_argument('test_file', type=str, help='测试文件的路径。')
parser.add_argument('zip_file', type=str, help='压缩包的路径。')
parser.add_argument('overall_path', type=str, help='overall文件的基础路径和文件名前缀。')
parser.add_argument('base_data_path', type=str, help='基准文件的基础路径和文件名前缀。')
parser.add_argument('--badcase_path', type=str, default=None, help='badcase文件的基础路径和文件名前缀(可选)。')
parser.add_argument('--s3_bucket_name', type=str, help='S3桶名称。', default=None)
parser.add_argument('--s3_file_directory', type=str, help='S3上的文件保存目录。', default=None)
parser.add_argument('--AWS_ACCESS_KEY', type=str, help='AWS访问密钥。', default=None)
parser.add_argument('--AWS_SECRET_KEY', type=str, help='AWS秘密密钥。', default=None)
parser.add_argument('--END_POINT_URL', type=str, help='AWS端点URL。', default=None)
args = parser.parse_args()
main(args.standard_file, args.test_file, args.zip_file, args.overall_path, args.base_data_path,
badcase_path=args.badcase_path, s3_bucket_name=args.s3_bucket_name,
s3_file_directory=args.s3_file_directory, aws_access_key=args.AWS_ACCESS_KEY,
aws_secret_key=args.AWS_SECRET_KEY, end_point_url=args.END_POINT_URL)
import json
import pandas as pd
import numpy as np
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import argparse
import os
from sklearn.metrics import classification_report
from sklearn import metrics
from datetime import datetime
import boto3
from botocore.exceptions import NoCredentialsError, ClientError
from io import TextIOWrapper
import zipfile
def process_equations_and_blocks(json_data, is_standard):
"""
处理JSON数据,提取公式、文本块、图片块和表格块的边界框和文本信息。
参数:
- json_data: 列表,包含标准文档或测试文档的JSON数据。
- is_standard: 布尔值,指示处理的数据是否为标准文档。
返回:
- 字典,包含处理后的数据。
"""
equations_bboxs = {"inline": [], "interline": []}
equations_texts = {"inline": [], "interline": []}
dropped_bboxs = {"text": [], "image": [], "table": []}
dropped_tags = {"text": []}
para_texts = []
para_nums = []
for i in json_data:
mid_json = pd.DataFrame(i).iloc[:,:-1] if is_standard else pd.DataFrame(i)
page_data = {
"equations_bboxs_list": {"inline": [], "interline": []},
"equations_texts_list": {"inline": [], "interline": []},
"dropped_bboxs_list": {"text": [], "image": [], "table": []},
"dropped_tags_list": {"text": []},
"para_texts_list": [],
"para_nums_list": []
}
for eq_type in ["inline", "interline"]:
for equations in mid_json.loc[f"{eq_type}_equations", :]:
bboxs = [eq['bbox'] for eq in equations]
texts = [eq.get('latex_text' if is_standard else 'content', '') for eq in equations]
page_data["equations_bboxs_list"][eq_type].append(bboxs)
page_data["equations_texts_list"][eq_type].append(texts)
equations_bboxs["inline"].append(page_data["equations_bboxs_list"]["inline"])
equations_bboxs["interline"].append(page_data["equations_bboxs_list"]["interline"])
equations_texts["inline"].append(page_data["equations_texts_list"]["inline"])
equations_texts["interline"].append(page_data["equations_texts_list"]["interline"])
# 提取丢弃的文本块信息
for dropped_text_blocks in mid_json.loc['droped_text_block',:]:
bboxs, tags = [], []
for block in dropped_text_blocks:
bboxs.append(block['bbox'])
tags.append(block.get('tag', 'None'))
page_data["dropped_bboxs_list"]["text"].append(bboxs)
page_data["dropped_tags_list"]["text"].append(tags)
dropped_bboxs["text"].append(page_data["dropped_bboxs_list"]["text"])
dropped_tags["text"].append(page_data["dropped_tags_list"]["text"])
# 同时处理删除的图片块和表格块
for block_type in ['image', 'table']:
# page_blocks_list = []
for blocks in mid_json.loc[f'droped_{block_type}_block', :]:
# 如果是标准数据,直接添加整个块的列表
if is_standard:
page_data["dropped_bboxs_list"][block_type].append(blocks)
# 如果是测试数据,检查列表是否非空,并提取每个块的边界框
else:
page_blocks = [block['bbox'] for block in blocks] if blocks else []
page_data["dropped_bboxs_list"][block_type].append(page_blocks)
# 将当前页面的块边界框列表添加到结果字典中
dropped_bboxs['image'].append(page_data["dropped_bboxs_list"]['image'])
dropped_bboxs['table'].append(page_data["dropped_bboxs_list"]['table'])
# 处理段落
for para_blocks in mid_json.loc['para_blocks', :]:
page_data["para_nums_list"].append(len(para_blocks)) # 计算段落数
for para_block in para_blocks:
if is_standard:
# 标准数据直接提取文本
page_data["para_texts_list"].append(para_block['text'])
else:
# 测试数据可能需要检查'content'是否存在
if 'spans' in para_block[0] and para_block[0]['spans'][0]['type'] == 'text':
page_data["para_texts_list"].append(para_block[0]['spans'][0].get('content', ''))
para_texts.append(page_data["para_texts_list"])
para_nums.append(page_data["para_nums_list"])
return {
"equations_bboxs": equations_bboxs,
"equations_texts": equations_texts,
"dropped_bboxs": dropped_bboxs,
"dropped_tags": dropped_tags,
"para_texts": para_texts,
"para_nums": para_nums
}
def bbox_match_indicator_general(test_bboxs_list, standard_bboxs_list):
"""
计算边界框匹配指标,支持掉落的表格、图像和文本块。
此版本的函数专注于计算基于边界框的匹配指标,而不涉及标签匹配逻辑。
参数:
- test_bboxs: 测试集的边界框列表,按页面组织。
- standard_bboxs: 标准集的边界框列表,按页面组织。
返回:
- 一个字典,包含准确度、精确度、召回率和F1分数。
"""
# 如果两个列表都完全为空,返回0值指标
if all(len(page) == 0 for page in test_bboxs_list) and all(len(page) == 0 for page in standard_bboxs_list):
return {'accuracy': 0, 'precision': 0, 'recall': 0, 'f1_score': 0}
matched_bbox = []
matched_standard_bbox = []
for test_page, standard_page in zip(test_bboxs_list, standard_bboxs_list):
test_page_bbox, standard_page_bbox = [], []
for standard_bbox in standard_page:
if len(standard_bbox) != 4:
continue
matched = False
for test_bbox in test_page:
if len(test_bbox) == 4 and bbox_offset(standard_bbox, test_bbox):
matched = True
break
test_page_bbox.append(int(matched))
standard_page_bbox.append(1)
# 后处理以处理多删情况,保持原逻辑不变
diff_num = len(test_page) + test_page_bbox.count(0) - len(standard_page)
if diff_num > 0:
test_page_bbox.extend([1] * diff_num)
standard_page_bbox.extend([0] * diff_num)
matched_bbox.extend(test_page_bbox)
matched_standard_bbox.extend(standard_page_bbox)
block_report = {
'accuracy': metrics.accuracy_score(matched_standard_bbox, matched_bbox),
'precision': metrics.precision_score(matched_standard_bbox, matched_bbox, zero_division=0),
'recall': metrics.recall_score(matched_standard_bbox, matched_bbox, zero_division=0),
'f1_score': metrics.f1_score(matched_standard_bbox, matched_bbox, zero_division=0)
}
return block_report
def bbox_offset(b_t, b_s):
"""
判断两个边界框(bounding box)之间的重叠程度是否符合给定的标准。
参数:
- b_t: 测试文档中的边界框(bbox),格式为(x1, y1, x2, y2),
其中(x1, y1)是左上角的坐标,(x2, y2)是右下角的坐标。
- b_s: 标准文档中的边界框(bbox),格式同上。
返回:
- True: 如果两个边界框的重叠面积与两个边界框合计面积的差的比例超过0.95,
表明它们足够接近。
- False: 否则,表示两个边界框不足够接近。
注意:
- 函数首先计算两个bbox的交集区域,如果这个区域的面积相对于两个bbox的面积差非常大,
则认为这两个bbox足够接近。
- 如果交集区域的计算结果导致无效区域(比如宽度或高度为负值),或者分母为0(即两个bbox完全不重叠),
则函数会返回False。
"""
# 分别提取两个bbox的坐标
x1_t, y1_t, x2_t, y2_t = b_t
x1_s, y1_s, x2_s, y2_s = b_s
# 计算两个bbox交集区域的坐标
x1 = max(x1_t, x1_s)
x2 = min(x2_t, x2_s)
y1 = max(y1_t, y1_s)
y2 = min(y2_t, y2_s)
# 如果计算出的交集区域有效,则计算其面积
if x2 > x1 and y2 > y1:
area_overlap = (x2 - x1) * (y2 - y1)
else:
# 交集区域无效,视为无重叠
area_overlap = 0
# 计算两个bbox的总面积,减去重叠部分避免重复计算
area_t = (x2_t - x1_t) * (y2_t - y1_t) + (x2_s - x1_s) * (y2_s - y1_s) - area_overlap
# 判断重叠面积是否符合标准
if area_t-area_overlap==0 or area_overlap/area_t>0.95:
return True
else:
return False
def Levenshtein_Distance(str1, str2):
"""
计算并返回两个字符串之间的Levenshtein编辑距离。
参数:
- str1: 字符串,第一个比较字符串。
- str2: 字符串,第二个比较字符串。
返回:
- int: str1和str2之间的Levenshtein距离。
方法:
- 使用动态规划构建一个矩阵(matrix),其中matrix[i][j]表示str1的前i个字符和str2的前j个字符之间的Levenshtein距离。
- 矩阵的初始值设定为边界情况,即一个字符串与空字符串之间的距离。
- 遍历矩阵填充每个格子的值,根据字符是否相等选择插入、删除或替换操作的最小代价。
"""
# 初始化矩阵,大小为(len(str1)+1) x (len(str2)+1),边界情况下的距离为i和j
matrix = [[i + j for j in range(len(str2) + 1)] for i in range(len(str1) + 1)]
# 遍历str1和str2的每个字符,更新矩阵中的值
for i in range(1, len(str1) + 1):
for j in range(1, len(str2) + 1):
# 如果当前字符相等,替换代价为0;否则为1
d = 0 if (str1[i - 1] == str2[j - 1]) else 1
# 更新当前位置的值为从str1[i]转换到str2[j]的最小操作数
matrix[i][j] = min(matrix[i - 1][j] + 1, # 删除操作
matrix[i][j - 1] + 1, # 插入操作
matrix[i - 1][j - 1] + d) # 替换操作
# 返回右下角的值,即str1和str2之间的Levenshtein距离
return matrix[len(str1)][len(str2)]
def equations_indicator(test_equations_bboxs, standard_equations_bboxs, test_equations, standard_equations):
"""
根据边界框匹配的方程计算编辑距离和BLEU分数。
参数:
- test_equations_bboxs: 测试方程的边界框列表。
- standard_equations_bboxs: 标准方程的边界框列表。
- test_equations: 测试方程的列表。
- standard_equations: 标准方程的列表。
返回:
- 一个元组,包含匹配方程的平均Levenshtein编辑距离和BLEU分数。
"""
# 初始化匹配方程列表
test_match_equations = []
standard_match_equations = []
# 匹配方程基于边界框重叠
for index, (test_bbox, standard_bbox) in enumerate(zip(test_equations_bboxs, standard_equations_bboxs)):
if not (test_bbox and standard_bbox): # 跳过任一空列表
continue
for i, sb in enumerate(standard_bbox):
for j, tb in enumerate(test_bbox):
if bbox_offset(sb, tb):
standard_match_equations.append(standard_equations[index][i])
test_match_equations.append(test_equations[index][j])
break # 找到第一个匹配后即跳出循环
# 使用Levenshtein距离和BLEU分数计算编辑距离
dis = [Levenshtein_Distance(a, b) for a, b in zip(test_match_equations, standard_match_equations) if a and b]
# 应用平滑函数计算BLEU分数
sm_func = SmoothingFunction().method1
bleu = [sentence_bleu([a.split()], b.split(), smoothing_function=sm_func) for a, b in zip(test_match_equations, standard_match_equations) if a and b]
# 计算平均编辑距离和BLEU分数,处理空列表情况
equations_edit = np.mean(dis) if dis else float('0.0')
equations_bleu = np.mean(bleu) if bleu else float('0.0')
return equations_edit, equations_bleu
def bbox_match_indicator_general(test_bboxs_list, standard_bboxs_list):
"""
计算边界框匹配指标,支持掉落的表格、图像和文本块。
此版本的函数专注于计算基于边界框的匹配指标,而不涉及标签匹配逻辑。
参数:
- test_bboxs: 测试集的边界框列表,按页面组织。
- standard_bboxs: 标准集的边界框列表,按页面组织。
返回:
- 一个字典,包含准确度、精确度、召回率和F1分数。
"""
# 如果两个列表都完全为空,返回0值指标
if all(len(page) == 0 for page in test_bboxs_list) and all(len(page) == 0 for page in standard_bboxs_list):
return {'accuracy': 0, 'precision': 0, 'recall': 0, 'f1_score': 0}
matched_bbox = []
matched_standard_bbox = []
for test_page, standard_page in zip(test_bboxs_list, standard_bboxs_list):
test_page_bbox, standard_page_bbox = [], []
for standard_bbox in standard_page:
if len(standard_bbox) != 4:
continue
matched = False
for test_bbox in test_page:
if len(test_bbox) == 4 and bbox_offset(standard_bbox, test_bbox):
matched = True
break
test_page_bbox.append(int(matched))
standard_page_bbox.append(1)
# 后处理以处理多删情况,保持原逻辑不变
diff_num = len(test_page) + test_page_bbox.count(0) - len(standard_page)
if diff_num > 0:
test_page_bbox.extend([1] * diff_num)
standard_page_bbox.extend([0] * diff_num)
matched_bbox.extend(test_page_bbox)
matched_standard_bbox.extend(standard_page_bbox)
block_report = {
'accuracy': metrics.accuracy_score(matched_standard_bbox, matched_bbox),
'precision': metrics.precision_score(matched_standard_bbox, matched_bbox, zero_division=0),
'recall': metrics.recall_score(matched_standard_bbox, matched_bbox, zero_division=0),
'f1_score': metrics.f1_score(matched_standard_bbox, matched_bbox, zero_division=0)
}
return block_report
def bbox_match_indicator_dropped_text_block(test_dropped_text_bboxs, standard_dropped_text_bboxs, standard_dropped_text_tag, test_dropped_text_tag):
"""
计算丢弃文本块的边界框匹配相关指标,包括准确率、精确率、召回率和F1分数,
同时也计算文本块标签的匹配指标。
参数:
- test_dropped_text_bboxs: 测试集的丢弃文本块边界框列表
- standard_dropped_text_bboxs: 标准集的丢弃文本块边界框列表
- standard_dropped_text_tag: 标准集的丢弃文本块标签列表
- test_dropped_text_tag: 测试集的丢弃文本块标签列表
返回:
- 一个包含边界框匹配指标和文本块标签匹配指标的元组
"""
test_text_bbox, standard_text_bbox = [], []
test_tag, standard_tag = [], []
for index, (test_page, standard_page) in enumerate(zip(test_dropped_text_bboxs, standard_dropped_text_bboxs)):
# 初始化每个页面的结果列表
test_page_tag, standard_page_tag = [], []
test_page_bbox, standard_page_bbox = [], []
for i, standard_bbox in enumerate(standard_page):
matched = False
for j, test_bbox in enumerate(test_page):
if bbox_offset(standard_bbox, test_bbox):
# 匹配成功,记录标签和边界框匹配结果
matched = True
test_page_tag.append(test_dropped_text_tag[index][j])
test_page_bbox.append(1)
break
if not matched:
# 未匹配,记录'None'和边界框未匹配结果
test_page_tag.append('None')
test_page_bbox.append(0)
# 标准边界框和标签总是被视为匹配的
standard_page_tag.append(standard_dropped_text_tag[index][i])
standard_page_bbox.append(1)
# 处理可能的多删情况
handle_multi_deletion(test_page, test_page_tag, test_page_bbox, standard_page_tag, standard_page_bbox)
# 合并当前页面的结果到整体结果中
test_tag.extend(test_page_tag)
standard_tag.extend(standard_page_tag)
test_text_bbox.extend(test_page_bbox)
standard_text_bbox.extend(standard_page_bbox)
# 计算和返回匹配指标
text_block_report = {
'accuracy': metrics.accuracy_score(standard_text_bbox, test_text_bbox),
'precision': metrics.precision_score(standard_text_bbox, test_text_bbox, zero_division=0),
'recall': metrics.recall_score(standard_text_bbox, test_text_bbox, zero_division=0),
'f1_score': metrics.f1_score(standard_text_bbox, test_text_bbox, zero_division=0)
}
# 计算和返回标签匹配指标
text_block_tag_report = classification_report(y_true=standard_tag, y_pred=test_tag, labels=list(set(standard_tag) - {'None'}), output_dict=True, zero_division=0)
del text_block_tag_report["macro avg"]
del text_block_tag_report["weighted avg"]
return text_block_report, text_block_tag_report
def handle_multi_deletion(test_page, test_page_tag, test_page_bbox, standard_page_tag, standard_page_bbox):
"""
处理多删情况,即测试页面的边界框或标签数量多于标准页面。
"""
excess_count = len(test_page) + test_page_bbox.count(0) - len(standard_page_tag)
if excess_count > 0:
# 对于多出的项,将它们视为正确匹配的边界框,但标签视为'None'
test_page_bbox.extend([1] * excess_count)
standard_page_bbox.extend([0] * excess_count)
test_page_tag.extend(['None'] * excess_count)
standard_page_tag.extend(['None'] * excess_count)
def consolidate_data(test_data, standard_data, key_path):
"""
Consolidates data from test and standard datasets based on the provided key path.
:param test_data: Dictionary containing the test dataset.
:param standard_data: Dictionary containing the standard dataset.
:param key_path: List of keys leading to the desired data within the dictionaries.
:return: List containing all items from both test and standard data at the specified key path.
"""
# Initialize an empty list to hold the consolidated data
overall_data_standard = []
overall_data_test = []
# Helper function to recursively navigate through the dictionaries based on the key path
def extract_data(source_data, keys):
for key in keys[:-1]:
source_data = source_data.get(key, {})
return source_data.get(keys[-1], [])
for data in extract_data(standard_data, key_path):
# 假设每个 single_table_tags 已经是一个列表,直接将它的元素添加到总列表中
overall_data_standard.extend(data)
for data in extract_data(test_data, key_path):
overall_data_test.extend(data)
# Extract and extend the overall data list with items from both test and standard datasets
return overall_data_standard, overall_data_test
def overall_calculate_metrics(inner_merge, json_test, json_standard,standard_exist, test_exist):
"""
计算整体的指标,包括准确率、精确率、召回率、F1值、平均编辑距离、平均BLEU得分、分段准确率、公式准确率、公式编辑距离、公式BLEU、丢弃文本准确率、丢弃文本标签准确率、丢弃图片准确率、丢弃表格准确率等。
Args:
inner_merge (dict): 包含merge信息的字典,包括pass_label和id等信息。
json_test (dict): 测试集的json数据。
json_standard (dict): 标准集的json数据。
standard_exist (list): 标准集中存在的id列表。
test_exist (list): 测试集中存在的id列表。
Returns:
dict: 包含整体指标值的字典。
"""
process_data_standard = process_equations_and_blocks(json_standard, is_standard=True)
process_data_test = process_equations_and_blocks(json_test, is_standard=False)
overall_report = {}
overall_report['accuracy']=metrics.accuracy_score(standard_exist,test_exist)
overall_report['precision']=metrics.precision_score(standard_exist,test_exist)
overall_report['recall']=metrics.recall_score(standard_exist,test_exist)
overall_report['f1_score']=metrics.f1_score(standard_exist,test_exist)
overall_report
test_para_text = np.asarray(process_data_test['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
standard_para_text = np.asarray(process_data_standard['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
ids_yes = inner_merge['id'][inner_merge['pass_label'] == 'yes'].tolist()
pdf_dis = {}
pdf_bleu = {}
# 对pass_label为'yes'的数据计算编辑距离和BLEU得分
for idx,(a, b, id) in enumerate(zip(test_para_text, standard_para_text, ids_yes)):
a1 = ''.join(a)
b1 = ''.join(b)
pdf_dis[id] = Levenshtein_Distance(a, b)
pdf_bleu[id] = sentence_bleu([a1], b1)
overall_report['pdf间的平均编辑距离'] = np.mean(list(pdf_dis.values()))
overall_report['pdf间的平均bleu'] = np.mean(list(pdf_bleu.values()))
# Consolidate equations bboxs inline
overall_equations_bboxs_inline_standard,overall_equations_bboxs_inline_test = consolidate_data(process_data_test, process_data_standard, ["equations_bboxs", "inline"])
# # Consolidate equations texts inline
overall_equations_texts_inline_standard,overall_equations_texts_inline_test = consolidate_data(process_data_test, process_data_standard, ["equations_texts", "inline"])
# Consolidate equations bboxs interline
overall_equations_bboxs_interline_standard,overall_equations_bboxs_interline_test = consolidate_data(process_data_test, process_data_standard, ["equations_bboxs", "interline"])
# Consolidate equations texts interline
overall_equations_texts_interline_standard,overall_equations_texts_interline_test = consolidate_data(process_data_test, process_data_standard, ["equations_texts", "interline"])
overall_dropped_bboxs_text_standard,overall_dropped_bboxs_text_test = consolidate_data(process_data_test, process_data_standard, ["dropped_bboxs","text"])
overall_dropped_tags_text_standard,overall_dropped_tags_text_test = consolidate_data(process_data_test, process_data_standard, ["dropped_tags","text"])
overall_dropped_bboxs_image_standard,overall_dropped_bboxs_image_test = consolidate_data(process_data_test, process_data_standard, ["dropped_bboxs","image"])
overall_dropped_bboxs_table_standard,overall_dropped_bboxs_table_test=consolidate_data(process_data_test, process_data_standard,["dropped_bboxs","table"])
para_nums_test = process_data_test['para_nums']
para_nums_standard=process_data_standard['para_nums']
overall_para_nums_standard = [item for sublist in para_nums_standard for item in (sublist if isinstance(sublist, list) else [sublist])]
overall_para_nums_test = [item for sublist in para_nums_test for item in (sublist if isinstance(sublist, list) else [sublist])]
test_para_num=np.array(overall_para_nums_test)
standard_para_num=np.array(overall_para_nums_standard)
acc_para=np.mean(test_para_num==standard_para_num)
overall_report['分段准确率'] = acc_para
# 行内公式准确率和编辑距离、bleu
overall_report['行内公式准确率'] = bbox_match_indicator_general(
overall_equations_bboxs_inline_test,
overall_equations_bboxs_inline_standard)
overall_report['行内公式编辑距离'], overall_report['行内公式bleu'] = equations_indicator(
overall_equations_bboxs_inline_test,
overall_equations_bboxs_inline_standard,
overall_equations_texts_inline_test,
overall_equations_texts_inline_standard)
# 行间公式准确率和编辑距离、bleu
overall_report['行间公式准确率'] = bbox_match_indicator_general(
overall_equations_bboxs_interline_test,
overall_equations_bboxs_interline_standard)
overall_report['行间公式编辑距离'], overall_report['行间公式bleu'] = equations_indicator(
overall_equations_bboxs_interline_test,
overall_equations_bboxs_interline_standard,
overall_equations_texts_interline_test,
overall_equations_texts_interline_standard)
# 丢弃文本准确率,丢弃文本标签准确率
overall_report['丢弃文本准确率'], overall_report['丢弃文本标签准确率'] = bbox_match_indicator_dropped_text_block(
overall_dropped_bboxs_text_test,
overall_dropped_bboxs_text_standard,
overall_dropped_tags_text_standard,
overall_dropped_tags_text_test)
# 丢弃图片准确率
overall_report['丢弃图片准确率'] = bbox_match_indicator_general(
overall_dropped_bboxs_image_test,
overall_dropped_bboxs_image_standard)
# 丢弃表格准确率
overall_report['丢弃表格准确率'] = bbox_match_indicator_general(
overall_dropped_bboxs_table_test,
overall_dropped_bboxs_table_standard)
return overall_report
def calculate_metrics(inner_merge, json_test, json_standard, json_standard_origin):
"""
计算指标
"""
# 创建ID到file_id的映射
id_to_file_id_map = pd.Series(json_standard_origin.file_id.values, index=json_standard_origin.id).to_dict()
# 处理标准数据和测试数据
process_data_standard = process_equations_and_blocks(json_standard, is_standard=True)
process_data_test = process_equations_and_blocks(json_test, is_standard=False)
# 从inner_merge中筛选出pass_label为'yes'的数据
test_para_text = np.asarray(process_data_test['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
standard_para_text = np.asarray(process_data_standard['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
ids_yes = inner_merge['id'][inner_merge['pass_label'] == 'yes'].tolist()
pdf_dis = {}
pdf_bleu = {}
# 对pass_label为'yes'的数据计算编辑距离和BLEU得分
for idx, (a, b, id) in enumerate(zip(test_para_text, standard_para_text, ids_yes)):
a1 = ''.join(a)
b1 = ''.join(b)
pdf_dis[id] = Levenshtein_Distance(a, b)
pdf_bleu[id] = sentence_bleu([a1], b1)
result_dict = {}
acc_para=[]
# 对所有数据计算其他指标
for index, id_value in enumerate(inner_merge['id'].tolist()):
result = {}
# 增加file_id到结果中
file_id = id_to_file_id_map.get(id_value, "Unknown")
result['file_id'] = file_id
# 根据id判断是否需要计算pdf_dis和pdf_bleu
if id_value in ids_yes:
result['pdf_dis'] = pdf_dis[id_value]
result['pdf_bleu'] = pdf_bleu[id_value]
# 计算分段准确率
single_test_para_num = np.array(process_data_test['para_nums'][index])
single_standard_para_num = np.array(process_data_standard['para_nums'][index])
acc_para.append(np.mean(single_test_para_num == single_standard_para_num))
result['分段准确率'] = acc_para[index]
# 行内公式准确率和编辑距离、bleu
result['行内公式准确率'] = bbox_match_indicator_general(
process_data_test["equations_bboxs"]["inline"][index],
process_data_standard["equations_bboxs"]["inline"][index])
result['行内公式编辑距离'], result['行内公式bleu'] = equations_indicator(
process_data_test["equations_bboxs"]["inline"][index],
process_data_standard["equations_bboxs"]["inline"][index],
process_data_test["equations_texts"]["inline"][index],
process_data_standard["equations_texts"]["inline"][index])
# 行间公式准确率和编辑距离、bleu
result['行间公式准确率'] = bbox_match_indicator_general(
process_data_test["equations_bboxs"]["interline"][index],
process_data_standard["equations_bboxs"]["interline"][index])
result['行间公式编辑距离'], result['行间公式bleu'] = equations_indicator(
process_data_test["equations_bboxs"]["interline"][index],
process_data_standard["equations_bboxs"]["interline"][index],
process_data_test["equations_texts"]["interline"][index],
process_data_standard["equations_texts"]["interline"][index])
# 丢弃文本准确率,丢弃文本标签准确率
result['丢弃文本准确率'], result['丢弃文本标签准确率'] = bbox_match_indicator_dropped_text_block(
process_data_test["dropped_bboxs"]["text"][index],
process_data_standard["dropped_bboxs"]["text"][index],
process_data_standard["dropped_tags"]["text"][index],
process_data_test["dropped_tags"]["text"][index])
# 丢弃图片准确率
result['丢弃图片准确率'] = bbox_match_indicator_general(
process_data_test["dropped_bboxs"]["image"][index],
process_data_standard["dropped_bboxs"]["image"][index])
# 丢弃表格准确率
result['丢弃表格准确率'] = bbox_match_indicator_general(
process_data_test["dropped_bboxs"]["table"][index],
process_data_standard["dropped_bboxs"]["table"][index])
# 将结果存入result_dict
result_dict[id_value] = result
return result_dict
def check_json_files_in_zip_exist(zip_file_path, standard_json_path_in_zip, test_json_path_in_zip):
"""
检查ZIP文件中是否存在指定的JSON文件
"""
with zipfile.ZipFile(zip_file_path, 'r') as z:
# 获取ZIP文件中所有文件的列表
all_files_in_zip = z.namelist()
# 检查标准文件和测试文件是否都在ZIP文件中
if standard_json_path_in_zip not in all_files_in_zip or test_json_path_in_zip not in all_files_in_zip:
raise FileNotFoundError("One or both of the required JSON files are missing from the ZIP archive.")
def read_json_files_from_streams(standard_file_stream, test_file_stream):
"""
从文件流中读取JSON文件内容
"""
pdf_json_standard = [json.loads(line) for line in standard_file_stream]
pdf_json_test = [json.loads(line) for line in test_file_stream]
json_standard_origin = pd.DataFrame(pdf_json_standard)
json_test_origin = pd.DataFrame(pdf_json_test)
return json_standard_origin, json_test_origin
def read_json_files_from_zip(zip_file_path, standard_json_path_in_zip, test_json_path_in_zip):
"""
从ZIP文件中读取两个JSON文件并返回它们的DataFrame
"""
with zipfile.ZipFile(zip_file_path, 'r') as z:
with z.open(standard_json_path_in_zip) as standard_file_stream, \
z.open(test_json_path_in_zip) as test_file_stream:
standard_file_text_stream = TextIOWrapper(standard_file_stream, encoding='utf-8')
test_file_text_stream = TextIOWrapper(test_file_stream, encoding='utf-8')
json_standard_origin, json_test_origin = read_json_files_from_streams(
standard_file_text_stream, test_file_text_stream
)
return json_standard_origin, json_test_origin
def merge_json_data(json_test_df, json_standard_df):
"""
基于ID合并测试和标准数据集,并返回合并后的数据及存在性检查结果。
参数:
- json_test_df: 测试数据的DataFrame。
- json_standard_df: 标准数据的DataFrame。
返回:
- inner_merge: 内部合并的DataFrame,包含匹配的数据行。
- standard_exist: 标准数据存在性的Series。
- test_exist: 测试数据存在性的Series。
"""
test_data = json_test_df[['id', 'mid_json']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
standard_data = json_standard_df[['id', 'mid_json', 'pass_label']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
outer_merge = pd.merge(test_data, standard_data, on='id', how='outer')
outer_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']
standard_exist = outer_merge.standard_mid_json.notnull()
test_exist = outer_merge.test_mid_json.notnull()
inner_merge = pd.merge(test_data, standard_data, on='id', how='inner')
inner_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']
return inner_merge, standard_exist, test_exist
def generate_filename(base_path):
"""
生成带有当前时间戳的输出文件名。
参数:
- base_path: 基础路径和文件名前缀。
返回:
- 带有当前时间戳的完整输出文件名。
"""
current_time = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
return f"{base_path}_{current_time}.json"
def save_results(data_dict, file_path):
"""
将数据字典保存为JSON文件至指定路径。
参数:
- data_dict: 包含数据的字典。
- file_path: 结果文件的保存路径,包括文件名。
"""
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(data_dict, f, ensure_ascii=False, indent=4)
print(f"结果已经保存到文件:{file_path}")
def upload_to_s3(file_path, bucket_name, s3_directory, AWS_ACCESS_KEY, AWS_SECRET_KEY, END_POINT_URL):
"""
上传文件到Amazon S3
"""
# 创建S3客户端
s3 = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_SECRET_KEY, endpoint_url=END_POINT_URL)
try:
# 从文件路径中提取文件名
file_name = os.path.basename(file_path)
# 创建S3对象键,将s3_directory和file_name连接起来
s3_object_key = f"{s3_directory}/{file_name}" # 使用斜杠直接连接
# 上传文件到S3
s3.upload_file(file_path, bucket_name, s3_object_key)
print(f"文件 {file_path} 成功上传到S3存储桶 {bucket_name} 中的目录 {s3_directory},文件名为 {file_name}")
except FileNotFoundError:
print(f"文件 {file_path} 未找到,请检查文件路径是否正确。")
except NoCredentialsError:
print("无法找到AWS凭证,请确认您的AWS访问密钥和密钥ID是否正确。")
except ClientError as e:
print(f"上传文件时发生错误:{e}")
def compare_edit_distance(json_file, overall_report):
with open(json_file, 'r',encoding='utf-8') as f:
json_data = json.load(f)
json_edit_distance = json_data['pdf间的平均编辑距离']
if overall_report['pdf间的平均编辑距离'] > json_edit_distance:
return 0
else:
return 1
def main(standard_file, test_file, zip_file, overall_path, base_data_path, badcase_path=None, s3_bucket_name=None, s3_file_directory=None,
aws_access_key=None, aws_secret_key=None, end_point_url=None):
"""
主函数,执行整个评估流程。
参数:
- standard_file: 标准文件的路径。
- test_file: 测试文件的路径。
- zip_file: 压缩包的路径的路径。
- badcase_path: badcase文件的基础路径和文件名前缀(可选)。
- overall_path: overall文件的基础路径和文件名前缀。
- base_data_path: 基础数据路径。
- s3_bucket_name: S3桶名称(可选)。
- s3_file_directory: S3上的文件保存目录(可选)。
- AWS_ACCESS_KEY, AWS_SECRET_KEY, END_POINT_URL: AWS访问凭证和端点URL(可选)。
"""
# 检查文件是否存在
check_json_files_in_zip_exist(zip_file, standard_file, test_file)
# 读取JSON文件内容
json_standard_origin, json_test_origin = read_json_files_from_zip(zip_file, standard_file, test_file)
# 合并JSON数据
inner_merge, standard_exist, test_exist = merge_json_data(json_test_origin, json_standard_origin)
# 计算总体指标
overall_report_dict = overall_calculate_metrics(inner_merge, inner_merge['test_mid_json'], inner_merge['standard_mid_json'], standard_exist, test_exist)
# 生成带时间戳的输出文件名
if badcase_path:
badcase_file = generate_filename(badcase_path)
result_dict = result_dict = calculate_metrics(inner_merge, inner_merge['test_mid_json'], inner_merge['standard_mid_json'], json_standard_origin)
save_results(result_dict, badcase_file)
overall_file = generate_filename(overall_path)
save_results(overall_report_dict, overall_file)
result = compare_edit_distance(base_data_path, overall_report_dict)
if all([s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url]):
try:
if badcase_path:
upload_to_s3(badcase_file, s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url)
upload_to_s3(overall_file, s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url)
except Exception as e:
print(f"上传到S3时发生错误: {e}")
print(result)
assert result == 1
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="主函数,执行整个评估流程。")
parser.add_argument('standard_file', type=str, help='标准文件的路径。')
parser.add_argument('test_file', type=str, help='测试文件的路径。')
parser.add_argument('zip_file', type=str, help='压缩包的路径。')
parser.add_argument('overall_path', type=str, help='overall文件的基础路径和文件名前缀。')
parser.add_argument('base_data_path', type=str, help='基准文件的基础路径和文件名前缀。')
parser.add_argument('--badcase_path', type=str, default=None, help='badcase文件的基础路径和文件名前缀(可选)。')
parser.add_argument('--s3_bucket_name', type=str, help='S3桶名称。', default=None)
parser.add_argument('--s3_file_directory', type=str, help='S3上的文件保存目录。', default=None)
parser.add_argument('--AWS_ACCESS_KEY', type=str, help='AWS访问密钥。', default=None)
parser.add_argument('--AWS_SECRET_KEY', type=str, help='AWS秘密密钥。', default=None)
parser.add_argument('--END_POINT_URL', type=str, help='AWS端点URL。', default=None)
args = parser.parse_args()
main(args.standard_file, args.test_file, args.zip_file, args.overall_path, args.base_data_path,
badcase_path=args.badcase_path, s3_bucket_name=args.s3_bucket_name,
s3_file_directory=args.s3_file_directory, aws_access_key=args.AWS_ACCESS_KEY,
aws_secret_key=args.AWS_SECRET_KEY, end_point_url=args.END_POINT_URL)
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
import math
from rapidfuzz import fuzz
import re
import regex
from statistics import mean
CHUNK_MIN_CHARS = 25
def chunk_text(text, chunk_len=500):
chunks = [text[i:i+chunk_len] for i in range(0, len(text), chunk_len)]
chunks = [c for c in chunks if c.strip() and len(c) > CHUNK_MIN_CHARS]
return chunks
def overlap_score(hypothesis_chunks, reference_chunks):
if len(reference_chunks) > 0:
length_modifier = len(hypothesis_chunks) / len(reference_chunks)
else:
length_modifier = 0
search_distance = max(len(reference_chunks) // 5, 10)
chunk_scores = []
for i, hyp_chunk in enumerate(hypothesis_chunks):
max_score = 0
total_len = 0
i_offset = int(i * length_modifier)
chunk_range = range(max(0, i_offset-search_distance), min(len(reference_chunks), i_offset+search_distance))
for j in chunk_range:
ref_chunk = reference_chunks[j]
score = fuzz.ratio(hyp_chunk, ref_chunk, score_cutoff=30) / 100
if score > max_score:
max_score = score
total_len = len(ref_chunk)
chunk_scores.append(max_score)
return chunk_scores
def score_text(hypothesis, reference):
# Returns a 0-1 alignment score
hypothesis_chunks = chunk_text(hypothesis)
reference_chunks = chunk_text(reference)
chunk_scores = overlap_score(hypothesis_chunks, reference_chunks)
if len(chunk_scores) > 0:
mean_score = mean(chunk_scores)
return mean_score
else:
return 0
#return mean(chunk_scores)
\ No newline at end of file
import json
import pandas as pd
import numpy as np
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import argparse
import os
from sklearn.metrics import classification_report
from sklearn import metrics
from datetime import datetime
import boto3
from botocore.exceptions import NoCredentialsError, ClientError
from io import TextIOWrapper
import zipfile
def Levenshtein_Distance(str1, str2):
"""
计算并返回两个字符串之间的Levenshtein编辑距离。
参数:
- str1: 字符串,第一个比较字符串。
- str2: 字符串,第二个比较字符串。
返回:
- int: str1和str2之间的Levenshtein距离。
方法:
- 使用动态规划构建一个矩阵(matrix),其中matrix[i][j]表示str1的前i个字符和str2的前j个字符之间的Levenshtein距离。
- 矩阵的初始值设定为边界情况,即一个字符串与空字符串之间的距离。
- 遍历矩阵填充每个格子的值,根据字符是否相等选择插入、删除或替换操作的最小代价。
"""
# 初始化矩阵,大小为(len(str1)+1) x (len(str2)+1),边界情况下的距离为i和j
matrix = [[i + j for j in range(len(str2) + 1)] for i in range(len(str1) + 1)]
# 遍历str1和str2的每个字符,更新矩阵中的值
for i in range(1, len(str1) + 1):
for j in range(1, len(str2) + 1):
# 如果当前字符相等,替换代价为0;否则为1
d = 0 if (str1[i - 1] == str2[j - 1]) else 1
# 更新当前位置的值为从str1[i]转换到str2[j]的最小操作数
matrix[i][j] = min(matrix[i - 1][j] + 1, # 删除操作
matrix[i][j - 1] + 1, # 插入操作
matrix[i - 1][j - 1] + d) # 替换操作
# 返回右下角的值,即str1和str2之间的Levenshtein距离
return matrix[len(str1)][len(str2)]
def bbox_offset(b_t, b_s):
"""
判断两个边界框(bounding box)之间的重叠程度是否符合给定的标准。
参数:
- b_t: 测试文档中的边界框(bbox),格式为(x1, y1, x2, y2),
其中(x1, y1)是左上角的坐标,(x2, y2)是右下角的坐标。
- b_s: 标准文档中的边界框(bbox),格式同上。
返回:
- True: 如果两个边界框的重叠面积与两个边界框合计面积的差的比例超过0.95,
表明它们足够接近。
- False: 否则,表示两个边界框不足够接近。
注意:
- 函数首先计算两个bbox的交集区域,如果这个区域的面积相对于两个bbox的面积差非常大,
则认为这两个bbox足够接近。
- 如果交集区域的计算结果导致无效区域(比如宽度或高度为负值),或者分母为0(即两个bbox完全不重叠),
则函数会返回False。
"""
# 分别提取两个bbox的坐标
x1_t, y1_t, x2_t, y2_t = b_t
x1_s, y1_s, x2_s, y2_s = b_s
# 计算两个bbox交集区域的坐标
x1 = max(x1_t, x1_s)
x2 = min(x2_t, x2_s)
y1 = max(y1_t, y1_s)
y2 = min(y2_t, y2_s)
# 如果计算出的交集区域有效,则计算其面积
if x2 > x1 and y2 > y1:
area_overlap = (x2 - x1) * (y2 - y1)
else:
# 交集区域无效,视为无重叠
area_overlap = 0
# 计算两个bbox的总面积,减去重叠部分避免重复计算
area_t = (x2_t - x1_t) * (y2_t - y1_t) + (x2_s - x1_s) * (y2_s - y1_s) - area_overlap
# 判断重叠面积是否符合标准
# return area_overlap / total_area
if area_t-area_overlap==0 or area_overlap/area_t>0.95:
return True
else:
return False
def equations_indicator(test_equations_bboxs, standard_equations_bboxs, test_equations, standard_equations):
"""
根据边界框匹配的方程计算编辑距离和BLEU分数。
参数:
- test_equations_bboxs: 测试方程的边界框列表。
- standard_equations_bboxs: 标准方程的边界框列表。
- test_equations: 测试方程的列表。
- standard_equations: 标准方程的列表。
返回:
- 一个元组,包含匹配方程的平均Levenshtein编辑距离和BLEU分数。
"""
# 初始化匹配方程列表
test_match_equations = []
standard_match_equations = []
# 匹配方程基于边界框重叠
for index, (test_bbox, standard_bbox) in enumerate(zip(test_equations_bboxs, standard_equations_bboxs)):
if not (test_bbox and standard_bbox): # 跳过任一空列表
continue
for i, sb in enumerate(standard_bbox):
for j, tb in enumerate(test_bbox):
if bbox_offset(sb, tb):
standard_match_equations.append(standard_equations[index][i])
test_match_equations.append(test_equations[index][j])
break # 找到第一个匹配后即跳出循环
# 使用Levenshtein距离和BLEU分数计算编辑距离
dis = [Levenshtein_Distance(a, b) for a, b in zip(test_match_equations, standard_match_equations) if a and b]
# 应用平滑函数计算BLEU分数
sm_func = SmoothingFunction().method1
bleu = [sentence_bleu([a.split()], b.split(), smoothing_function=sm_func) for a, b in zip(test_match_equations, standard_match_equations) if a and b]
# 计算平均编辑距离和BLEU分数,处理空列表情况
equations_edit = np.mean(dis) if dis else float('0.0')
equations_bleu = np.mean(bleu) if bleu else float('0.0')
return equations_edit, equations_bleu
def bbox_match_indicator_general(test_bboxs_list, standard_bboxs_list):
"""
计算边界框匹配指标,支持掉落的表格、图像和文本块。
此版本的函数专注于计算基于边界框的匹配指标,而不涉及标签匹配逻辑。
参数:
- test_bboxs: 测试集的边界框列表,按页面组织。
- standard_bboxs: 标准集的边界框列表,按页面组织。
返回:
- 一个字典,包含准确度、精确度、召回率和F1分数。
"""
# 如果两个列表都完全为空,返回0值指标
if all(len(page) == 0 for page in test_bboxs_list) and all(len(page) == 0 for page in standard_bboxs_list):
return {'accuracy': 0, 'precision': 0, 'recall': 0, 'f1_score': 0}
matched_bbox = []
matched_standard_bbox = []
for test_page, standard_page in zip(test_bboxs_list, standard_bboxs_list):
test_page_bbox, standard_page_bbox = [], []
for standard_bbox in standard_page:
if len(standard_bbox) != 4:
continue
matched = False
for test_bbox in test_page:
if len(test_bbox) == 4 and bbox_offset(standard_bbox, test_bbox):
matched = True
break
test_page_bbox.append(int(matched))
standard_page_bbox.append(1)
# 后处理以处理多删情况,保持原逻辑不变
diff_num = len(test_page) + test_page_bbox.count(0) - len(standard_page)
if diff_num > 0:
test_page_bbox.extend([1] * diff_num)
standard_page_bbox.extend([0] * diff_num)
matched_bbox.extend(test_page_bbox)
matched_standard_bbox.extend(standard_page_bbox)
block_report = {
'accuracy': metrics.accuracy_score(matched_standard_bbox, matched_bbox),
'precision': metrics.precision_score(matched_standard_bbox, matched_bbox, zero_division=0),
'recall': metrics.recall_score(matched_standard_bbox, matched_bbox, zero_division=0),
'f1_score': metrics.f1_score(matched_standard_bbox, matched_bbox, zero_division=0)
}
return block_report
def bbox_match_indicator_dropped_text_block(test_dropped_text_bboxs, standard_dropped_text_bboxs, standard_dropped_text_tag, test_dropped_text_tag):
"""
计算丢弃文本块的边界框匹配相关指标,包括准确率、精确率、召回率和F1分数,
同时也计算文本块标签的匹配指标。
参数:
- test_dropped_text_bboxs: 测试集的丢弃文本块边界框列表
- standard_dropped_text_bboxs: 标准集的丢弃文本块边界框列表
- standard_dropped_text_tag: 标准集的丢弃文本块标签列表
- test_dropped_text_tag: 测试集的丢弃文本块标签列表
返回:
- 一个包含边界框匹配指标和文本块标签匹配指标的元组
"""
test_text_bbox, standard_text_bbox = [], []
test_tag, standard_tag = [], []
for index, (test_page, standard_page) in enumerate(zip(test_dropped_text_bboxs, standard_dropped_text_bboxs)):
# 初始化每个页面的结果列表
test_page_tag, standard_page_tag = [], []
test_page_bbox, standard_page_bbox = [], []
for i, standard_bbox in enumerate(standard_page):
matched = False
for j, test_bbox in enumerate(test_page):
if bbox_offset(standard_bbox, test_bbox):
# 匹配成功,记录标签和边界框匹配结果
matched = True
test_page_tag.append(test_dropped_text_tag[index][j])
test_page_bbox.append(1)
break
if not matched:
# 未匹配,记录'None'和边界框未匹配结果
test_page_tag.append('None')
test_page_bbox.append(0)
# 标准边界框和标签总是被视为匹配的
standard_page_tag.append(standard_dropped_text_tag[index][i])
standard_page_bbox.append(1)
# 处理可能的多删情况
handle_multi_deletion(test_page, test_page_tag, test_page_bbox, standard_page_tag, standard_page_bbox)
# 合并当前页面的结果到整体结果中
test_tag.extend(test_page_tag)
standard_tag.extend(standard_page_tag)
test_text_bbox.extend(test_page_bbox)
standard_text_bbox.extend(standard_page_bbox)
# 计算和返回匹配指标
if not standard_text_bbox or not test_text_bbox:
# print("警告:边界框列表为空,跳过性能指标的计算。")
text_block_report = {
'accuracy': np.nan,
'precision': np.nan,
'recall': np.nan,
'f1_score': np.nan
}
else:
text_block_report = {
'accuracy': metrics.accuracy_score(standard_text_bbox, test_text_bbox),
'precision': metrics.precision_score(standard_text_bbox, test_text_bbox, zero_division=0),
'recall': metrics.recall_score(standard_text_bbox, test_text_bbox, zero_division=0),
'f1_score': metrics.f1_score(standard_text_bbox, test_text_bbox, zero_division=0)
}
# 对于classification_report,确保至少有一个非'None'标签存在
labels = list(set(standard_tag) - {'None'})
if labels:
text_block_tag_report = classification_report(y_true=standard_tag, y_pred=test_tag, labels=labels, output_dict=True, zero_division=0)
# 删除不需要的平均值报告,以简化输出
text_block_tag_report.pop("macro avg", None)
text_block_tag_report.pop("weighted avg", None)
else:
# print("警告:无有效标签进行匹配,跳过标签匹配指标的计算。")
text_block_tag_report = {}
return text_block_report, text_block_tag_report
def handle_multi_deletion(test_page, test_page_tag, test_page_bbox, standard_page_tag, standard_page_bbox):
"""
处理多删情况,即测试页面的边界框或标签数量多于标准页面。
"""
excess_count = len(test_page) + test_page_bbox.count(0) - len(standard_page_tag)
if excess_count > 0:
# 对于多出的项,将它们视为正确匹配的边界框,但标签视为'None'
test_page_bbox.extend([1] * excess_count)
standard_page_bbox.extend([0] * excess_count)
test_page_tag.extend(['None'] * excess_count)
standard_page_tag.extend(['None'] * excess_count)
def read_json_files(standard_file, test_file):
"""
读取JSON文件内容
"""
with open(standard_file, 'r', encoding='utf-8') as sf:
pdf_json_standard = [json.loads(line) for line in sf]
with open(test_file, 'r', encoding='utf-8') as tf:
pdf_json_test = [json.loads(line) for line in tf]
json_standard_origin = pd.DataFrame(pdf_json_standard)
json_test = pd.DataFrame(pdf_json_test)
return json_standard_origin, json_test
def merge_json_data(json_test_df, json_standard_df):
"""
基于ID合并测试和标准数据集,并返回合并后的数据及存在性检查结果。
参数:
- json_test_df: 测试数据的DataFrame。
- json_standard_df: 标准数据的DataFrame。
返回:
- inner_merge: 内部合并的DataFrame,包含匹配的数据行。
- standard_exist: 标准数据存在性的Series。
- test_exist: 测试数据存在性的Series。
"""
test_data = json_test_df[['id', 'mid_json']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
standard_data = json_standard_df[['id', 'mid_json', 'pass_label']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
outer_merge = pd.merge(test_data, standard_data, on='id', how='outer')
outer_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']
standard_exist = outer_merge.standard_mid_json.notnull()
test_exist = outer_merge.test_mid_json.notnull()
inner_merge = pd.merge(test_data, standard_data, on='id', how='inner')
inner_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']
return inner_merge, standard_exist, test_exist
def process_equations_and_blocks(json_data):
"""
处理JSON数据,提取公式、文本块、图片块和表格块的边界框和文本信息。
参数:
- json_data: 列表,包含标准文档或测试文档的JSON数据。
返回:
- 字典,包含处理后的数据。
"""
equations_bboxs = {"inline": [], "interline": []}
equations_texts = {"inline": [], "interline": []}
dropped_bboxs = {"text": [], "image": [], "table": []}
dropped_tags = {"text": []}
para_texts = []
para_nums = []
preproc_nums = []
for i in json_data:
mid_json = pd.DataFrame(i).iloc[:,:-1]
page_data = {
"equations_bboxs_list": {"inline": [], "interline": []},
"equations_texts_list": {"inline": [], "interline": []},
"dropped_bboxs_list": {"text": [], "image": [], "table": []},
"dropped_tags_list": {"text": []},
"para_texts_list": [],
"para_nums_list": [],
"preproc_nums_list":[]
}
for eq_type in ["inline", "interline"]:
for equations in mid_json.loc[f"{eq_type}_equations", :]:
bboxs = [eq['bbox'] for eq in equations]
texts = [eq['latex_text'] for eq in equations]
page_data["equations_bboxs_list"][eq_type].append(bboxs)
page_data["equations_texts_list"][eq_type].append(texts)
equations_bboxs["inline"].append(page_data["equations_bboxs_list"]["inline"])
equations_bboxs["interline"].append(page_data["equations_bboxs_list"]["interline"])
equations_texts["inline"].append(page_data["equations_texts_list"]["inline"])
equations_texts["interline"].append(page_data["equations_texts_list"]["interline"])
# 提取丢弃的文本块信息
for dropped_text_blocks in mid_json.loc['droped_text_block',:]:
bboxs, tags = [], []
for block in dropped_text_blocks:
bboxs.append(block['bbox'])
tags.append(block.get('tag', 'None'))
page_data["dropped_bboxs_list"]["text"].append(bboxs)
page_data["dropped_tags_list"]["text"].append(tags)
dropped_bboxs["text"].append(page_data["dropped_bboxs_list"]["text"])
dropped_tags["text"].append(page_data["dropped_tags_list"]["text"])
# 同时处理删除的图片块和表格块
for block_type in ['image', 'table']:
# page_blocks_list = []
for blocks in mid_json.loc[f'droped_{block_type}_block', :]:
# 如果是标准数据,直接添加整个块的列表
page_data["dropped_bboxs_list"][block_type].append(blocks)
# 将当前页面的块边界框列表添加到结果字典中
dropped_bboxs['image'].append(page_data["dropped_bboxs_list"]['image'])
dropped_bboxs['table'].append(page_data["dropped_bboxs_list"]['table'])
# 处理段落
for para_blocks in mid_json.loc['para_blocks', :]:
page_data["para_nums_list"].append(len(para_blocks)) # 计算段落数
for para_block in para_blocks:
page_data["para_texts_list"].append(para_block['text'])
for preproc_blocks in mid_json.loc['preproc_blocks', :]:
numbers=[]
for preproc_block in preproc_blocks:
numbers.append(preproc_block['number'])
page_data["preproc_nums_list"].append(numbers)
para_texts.append(page_data["para_texts_list"])
para_nums.append(page_data["para_nums_list"])
preproc_nums.append(page_data["preproc_nums_list"])
return {
"equations_bboxs": equations_bboxs,
"equations_texts": equations_texts,
"dropped_bboxs": dropped_bboxs,
"dropped_tags": dropped_tags,
"para_texts": para_texts,
"para_nums": para_nums,
"preproc_nums": preproc_nums
}
def consolidate_data(test_data, standard_data, key_path):
"""
Consolidates data from test and standard datasets based on the provided key path.
:param test_data: Dictionary containing the test dataset.
:param standard_data: Dictionary containing the standard dataset.
:param key_path: List of keys leading to the desired data within the dictionaries.
:return: List containing all items from both test and standard data at the specified key path.
"""
# Initialize an empty list to hold the consolidated data
overall_data_standard = []
overall_data_test = []
# Helper function to recursively navigate through the dictionaries based on the key path
def extract_data(source_data, keys):
for key in keys[:-1]:
source_data = source_data.get(key, {})
return source_data.get(keys[-1], [])
for data in extract_data(standard_data, key_path):
# 假设每个 single_table_tags 已经是一个列表,直接将它的元素添加到总列表中
overall_data_standard.extend(data)
for data in extract_data(test_data, key_path):
overall_data_test.extend(data)
# Extract and extend the overall data list with items from both test and standard datasets
return overall_data_standard, overall_data_test
def calculate_metrics(inner_merge, json_test, json_standard, json_standard_origin):
"""
计算指标
"""
# 创建ID到file_id的映射
id_to_file_id_map = pd.Series(json_standard_origin.file_id.values, index=json_standard_origin.id).to_dict()
# 处理标准数据和测试数据
process_data_standard = process_equations_and_blocks(json_standard)
process_data_test = process_equations_and_blocks(json_test)
# 从inner_merge中筛选出pass_label为'yes'的数据
test_para_text = np.asarray(process_data_test['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
standard_para_text = np.asarray(process_data_standard['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
ids_yes = inner_merge['id'][inner_merge['pass_label'] == 'yes'].tolist()
pdf_dis = {}
pdf_bleu = {}
# 对pass_label为'yes'的数据计算编辑距离和BLEU得分
for idx, (a, b, id) in enumerate(zip(test_para_text, standard_para_text, ids_yes)):
a1 = ''.join(a)
b1 = ''.join(b)
pdf_dis[id] = Levenshtein_Distance(a, b)
pdf_bleu[id] = sentence_bleu([a1], b1)
result_dict = {}
acc_para=[]
# 对所有数据计算其他指标
for index, id_value in enumerate(inner_merge['id'].tolist()):
result = {}
# 增加file_id到结果中
file_id = id_to_file_id_map.get(id_value, "Unknown")
result['file_id'] = file_id
# 根据id判断是否需要计算pdf_dis和pdf_bleu
if id_value in ids_yes:
result['pdf_dis'] = pdf_dis[id_value]
result['pdf_bleu'] = pdf_bleu[id_value]
# 阅读顺序编辑距离的均值
preproc_num_dis=[]
for a,b in zip(process_data_test['preproc_nums'][index],process_data_standard['preproc_nums'][index]):
preproc_num_dis.append(Levenshtein_Distance(a,b))
result['阅读顺序编辑距离']=np.mean(preproc_num_dis)
# 计算分段准确率
single_test_para_num = np.array(process_data_test['para_nums'][index])
single_standard_para_num = np.array(process_data_standard['para_nums'][index])
acc_para.append(np.mean(single_test_para_num == single_standard_para_num))
result['分段准确率'] = acc_para[index]
# 行内公式准确率和编辑距离、bleu
result['行内公式准确率'] = bbox_match_indicator_general(
process_data_test["equations_bboxs"]["inline"][index],
process_data_standard["equations_bboxs"]["inline"][index])
result['行内公式编辑距离'], result['行内公式bleu'] = equations_indicator(
process_data_test["equations_bboxs"]["inline"][index],
process_data_standard["equations_bboxs"]["inline"][index],
process_data_test["equations_texts"]["inline"][index],
process_data_standard["equations_texts"]["inline"][index])
# 行间公式准确率和编辑距离、bleu
result['行间公式准确率'] = bbox_match_indicator_general(
process_data_test["equations_bboxs"]["interline"][index],
process_data_standard["equations_bboxs"]["interline"][index])
result['行间公式编辑距离'], result['行间公式bleu'] = equations_indicator(
process_data_test["equations_bboxs"]["interline"][index],
process_data_standard["equations_bboxs"]["interline"][index],
process_data_test["equations_texts"]["interline"][index],
process_data_standard["equations_texts"]["interline"][index])
# 丢弃文本准确率,丢弃文本标签准确率
result['丢弃文本准确率'], result['丢弃文本标签准确率'] = bbox_match_indicator_dropped_text_block(
process_data_test["dropped_bboxs"]["text"][index],
process_data_standard["dropped_bboxs"]["text"][index],
process_data_standard["dropped_tags"]["text"][index],
process_data_test["dropped_tags"]["text"][index])
# 丢弃图片准确率
result['丢弃图片准确率'] = bbox_match_indicator_general(
process_data_test["dropped_bboxs"]["image"][index],
process_data_standard["dropped_bboxs"]["image"][index])
# 丢弃表格准确率
result['丢弃表格准确率'] = bbox_match_indicator_general(
process_data_test["dropped_bboxs"]["table"][index],
process_data_standard["dropped_bboxs"]["table"][index])
# 将结果存入result_dict
result_dict[id_value] = result
return result_dict
def overall_calculate_metrics(inner_merge, json_test, json_standard,standard_exist, test_exist):
"""
计算整体指标:包括准确性、精确度、召回率、F1分数以及不同方面的详细指标。
参数:
- inner_merge: 合并后的内部数据,包含测试和标准数据的合并结果。
- json_test: 测试数据的JSON格式。
- json_standard: 标准数据的JSON格式。
- standard_exist: 标准存在的标签数据。
- test_exist: 测试存在的标签数据。
返回值:
- overall_report: 包含各种指标的字典。
"""
# 处理标准数据和测试数据,提取方程式和块
process_data_standard = process_equations_and_blocks(json_standard)
process_data_test = process_equations_and_blocks(json_test)
# 初始化整体报告,并计算基础指标
overall_report = {}
overall_report['accuracy']=metrics.accuracy_score(standard_exist,test_exist)
overall_report['precision']=metrics.precision_score(standard_exist,test_exist)
overall_report['recall']=metrics.recall_score(standard_exist,test_exist)
overall_report['f1_score']=metrics.f1_score(standard_exist,test_exist)
overall_report
# 提取通过标签的数据,并计算编辑距离和BLEU得分
test_para_text = np.asarray(process_data_test['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
standard_para_text = np.asarray(process_data_standard['para_texts'], dtype=object)[inner_merge['pass_label'] == 'yes']
ids_yes = inner_merge['id'][inner_merge['pass_label'] == 'yes'].tolist()
pdf_dis = {}
pdf_bleu = {}
for idx,(a, b, id) in enumerate(zip(test_para_text, standard_para_text, ids_yes)):
a1 = ''.join(a)
b1 = ''.join(b)
pdf_dis[id] = Levenshtein_Distance(a, b)
pdf_bleu[id] = sentence_bleu([a1], b1)
overall_report['pdf间的平均编辑距离'] = np.mean(list(pdf_dis.values()))
overall_report['pdf间的平均bleu'] = np.mean(list(pdf_bleu.values()))
# 合并数据中的方程式bbox和inline数据
overall_equations_bboxs_inline_standard,overall_equations_bboxs_inline_test = consolidate_data(process_data_test, process_data_standard, ["equations_bboxs", "inline"])
# 合并数据中的方程式文本和inline数据
overall_equations_texts_inline_standard,overall_equations_texts_inline_test = consolidate_data(process_data_test, process_data_standard, ["equations_texts", "inline"])
# 合并数据中的方程式bbox和interline数据
overall_equations_bboxs_interline_standard,overall_equations_bboxs_interline_test = consolidate_data(process_data_test, process_data_standard, ["equations_bboxs", "interline"])
# 合并数据中的方程式文本和interline数据
overall_equations_texts_interline_standard,overall_equations_texts_interline_test = consolidate_data(process_data_test, process_data_standard, ["equations_texts", "interline"])
# 合并丢弃的bbox和text数据
overall_dropped_bboxs_text_standard,overall_dropped_bboxs_text_test = consolidate_data(process_data_test, process_data_standard, ["dropped_bboxs","text"])
# 合并丢弃的tags和text数据
overall_dropped_tags_text_standard,overall_dropped_tags_text_test = consolidate_data(process_data_test, process_data_standard, ["dropped_tags","text"])
# 合并丢弃的bbox和image数据
overall_dropped_bboxs_image_standard,overall_dropped_bboxs_image_test = consolidate_data(process_data_test, process_data_standard, ["dropped_bboxs","image"])
# 合并丢弃的bbox和table数据
overall_dropped_bboxs_table_standard,overall_dropped_bboxs_table_test=consolidate_data(process_data_test, process_data_standard,["dropped_bboxs","table"])
# 合并阅读顺序的编辑距离
overall_preproc_standard,overall_preproc_test = consolidate_data(process_data_test, process_data_standard, ["preproc_nums"])
# 计算测试和标准数据的段落数量
para_nums_test = process_data_test['para_nums']
para_nums_standard=process_data_standard['para_nums']
overall_para_nums_standard = [item for sublist in para_nums_standard for item in (sublist if isinstance(sublist, list) else [sublist])]
overall_para_nums_test = [item for sublist in para_nums_test for item in (sublist if isinstance(sublist, list) else [sublist])]
preproc_num_dis=[]
for a,b in zip(overall_preproc_standard,overall_preproc_test):
preproc_num_dis.append(Levenshtein_Distance(a,b))
overall_report['阅读顺序编辑距离']=np.mean(preproc_num_dis)
# 计算段落匹配准确性
test_para_num=np.array(overall_para_nums_test)
standard_para_num=np.array(overall_para_nums_standard)
acc_para=np.mean(test_para_num==standard_para_num)
overall_report['分段准确率'] = acc_para
# 计算并更新报告中的各种指标
overall_report['行内公式准确率'] = bbox_match_indicator_general(
overall_equations_bboxs_inline_test,
overall_equations_bboxs_inline_standard)
overall_report['行内公式编辑距离'], overall_report['行内公式bleu'] = equations_indicator(
overall_equations_bboxs_inline_test,
overall_equations_bboxs_inline_standard,
overall_equations_texts_inline_test,
overall_equations_texts_inline_standard)
overall_report['行间公式准确率'] = bbox_match_indicator_general(
overall_equations_bboxs_interline_test,
overall_equations_bboxs_interline_standard)
overall_report['行间公式编辑距离'], overall_report['行间公式bleu'] = equations_indicator(
overall_equations_bboxs_interline_test,
overall_equations_bboxs_interline_standard,
overall_equations_texts_interline_test,
overall_equations_texts_interline_standard)
overall_report['丢弃文本准确率'], overall_report['丢弃文本标签准确率'] = bbox_match_indicator_dropped_text_block(
overall_dropped_bboxs_text_test,
overall_dropped_bboxs_text_standard,
overall_dropped_tags_text_standard,
overall_dropped_tags_text_test)
overall_report['丢弃图片准确率'] = bbox_match_indicator_general(
overall_dropped_bboxs_image_test,
overall_dropped_bboxs_image_standard)
overall_report['丢弃表格准确率'] = bbox_match_indicator_general(
overall_dropped_bboxs_table_test,
overall_dropped_bboxs_table_standard)
return overall_report
def check_json_files_in_zip_exist(zip_file_path, standard_json_path_in_zip, test_json_path_in_zip):
"""
检查ZIP文件中是否存在指定的JSON文件
"""
with zipfile.ZipFile(zip_file_path, 'r') as z:
# 获取ZIP文件中所有文件的列表
all_files_in_zip = z.namelist()
# 检查标准文件和测试文件是否都在ZIP文件中
if standard_json_path_in_zip not in all_files_in_zip or test_json_path_in_zip not in all_files_in_zip:
raise FileNotFoundError("One or both of the required JSON files are missing from the ZIP archive.")
def read_json_files_from_streams(standard_file_stream, test_file_stream):
"""
从文件流中读取JSON文件内容
"""
pdf_json_standard = [json.loads(line) for line in standard_file_stream]
pdf_json_test = [json.loads(line) for line in test_file_stream]
json_standard_origin = pd.DataFrame(pdf_json_standard)
json_test_origin = pd.DataFrame(pdf_json_test)
return json_standard_origin, json_test_origin
def read_json_files_from_zip(zip_file_path, standard_json_path_in_zip, test_json_path_in_zip):
"""
从ZIP文件中读取两个JSON文件并返回它们的DataFrame
"""
with zipfile.ZipFile(zip_file_path, 'r') as z:
with z.open(standard_json_path_in_zip) as standard_file_stream, \
z.open(test_json_path_in_zip) as test_file_stream:
standard_file_text_stream = TextIOWrapper(standard_file_stream, encoding='utf-8')
test_file_text_stream = TextIOWrapper(test_file_stream, encoding='utf-8')
json_standard_origin, json_test_origin = read_json_files_from_streams(
standard_file_text_stream, test_file_text_stream
)
return json_standard_origin, json_test_origin
def merge_json_data(json_test_df, json_standard_df):
"""
基于ID合并测试和标准数据集,并返回合并后的数据及存在性检查结果。
参数:
- json_test_df: 测试数据的DataFrame。
- json_standard_df: 标准数据的DataFrame。
返回:
- inner_merge: 内部合并的DataFrame,包含匹配的数据行。
- standard_exist: 标准数据存在性的Series。
- test_exist: 测试数据存在性的Series。
"""
test_data = json_test_df[['id', 'mid_json']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
standard_data = json_standard_df[['id', 'mid_json', 'pass_label']].drop_duplicates(subset='id', keep='first').reset_index(drop=True)
outer_merge = pd.merge(test_data, standard_data, on='id', how='outer')
outer_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']
standard_exist = outer_merge.standard_mid_json.notnull()
test_exist = outer_merge.test_mid_json.notnull()
inner_merge = pd.merge(test_data, standard_data, on='id', how='inner')
inner_merge.columns = ['id', 'test_mid_json', 'standard_mid_json', 'pass_label']
return inner_merge, standard_exist, test_exist
def generate_filename(base_path):
"""
生成带有当前时间戳的输出文件名。
参数:
- base_path: 基础路径和文件名前缀。
返回:
- 带有当前时间戳的完整输出文件名。
"""
current_time = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
return f"{base_path}_{current_time}.json"
def save_results(data_dict, file_path):
"""
将数据字典保存为JSON文件至指定路径。
参数:
- data_dict: 包含数据的字典。
- file_path: 结果文件的保存路径,包括文件名。
"""
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(data_dict, f, ensure_ascii=False, indent=4)
print(f"结果已经保存到文件:{file_path}")
def upload_to_s3(file_path, bucket_name, s3_directory, AWS_ACCESS_KEY, AWS_SECRET_KEY, END_POINT_URL):
"""
上传文件到Amazon S3
"""
# 创建S3客户端
s3 = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_SECRET_KEY, endpoint_url=END_POINT_URL)
try:
# 从文件路径中提取文件名
file_name = os.path.basename(file_path)
# 创建S3对象键,将s3_directory和file_name连接起来
s3_object_key = f"{s3_directory}/{file_name}" # 使用斜杠直接连接
# 上传文件到S3
s3.upload_file(file_path, bucket_name, s3_object_key)
print(f"文件 {file_path} 成功上传到S3存储桶 {bucket_name} 中的目录 {s3_directory},文件名为 {file_name}")
except FileNotFoundError:
print(f"文件 {file_path} 未找到,请检查文件路径是否正确。")
except NoCredentialsError:
print("无法找到AWS凭证,请确认您的AWS访问密钥和密钥ID是否正确。")
except ClientError as e:
print(f"上传文件时发生错误:{e}")
def compare_edit_distance(json_file, overall_report):
with open(json_file, 'r',encoding='utf-8') as f:
json_data = json.load(f)
json_edit_distance = json_data['pdf间的平均编辑距离']
if overall_report['pdf间的平均编辑距离'] > json_edit_distance:
return 0
else:
return 1
def main(standard_file, test_file, zip_file, overall_path, base_data_path, badcase_path=None, s3_bucket_name=None, s3_file_directory=None,
aws_access_key=None, aws_secret_key=None, end_point_url=None):
"""
主函数,执行整个评估流程。
参数:
- standard_file: 标准文件的路径。
- test_file: 测试文件的路径。
- zip_file: 压缩包的路径的路径。
- badcase_path: badcase文件的基础路径和文件名前缀(可选)。
- overall_path: overall文件的基础路径和文件名前缀。
- base_data_path: 基础数据路径。
- s3_bucket_name: S3桶名称(可选)。
- s3_file_directory: S3上的文件保存目录(可选)。
- AWS_ACCESS_KEY, AWS_SECRET_KEY, END_POINT_URL: AWS访问凭证和端点URL(可选)。
"""
# 检查文件是否存在
check_json_files_in_zip_exist(zip_file, standard_file, test_file)
# 读取JSON文件内容
json_standard_origin, json_test_origin = read_json_files_from_zip(zip_file, standard_file, test_file)
# 合并JSON数据
inner_merge, standard_exist, test_exist = merge_json_data(json_test_origin, json_standard_origin)
#计算总体指标
overall_report_dict=overall_calculate_metrics(inner_merge, inner_merge['test_mid_json'], inner_merge['standard_mid_json'],standard_exist, test_exist)
# 生成带时间戳的输出文件名
if badcase_path:
badcase_file = generate_filename(badcase_path)
result_dict = result_dict = calculate_metrics(inner_merge, inner_merge['test_mid_json'], inner_merge['standard_mid_json'], json_standard_origin)
save_results(result_dict, badcase_file)
overall_file = generate_filename(overall_path)
save_results(overall_report_dict, overall_file)
result = compare_edit_distance(base_data_path, overall_report_dict)
if all([s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url]):
try:
if badcase_path:
upload_to_s3(badcase_file, s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url)
upload_to_s3(overall_file, s3_bucket_name, s3_file_directory, aws_access_key, aws_secret_key, end_point_url)
except Exception as e:
print(f"上传到S3时发生错误: {e}")
print(result)
assert result == 1
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="主函数,执行整个评估流程。")
parser.add_argument('standard_file', type=str, help='标准文件的路径。')
parser.add_argument('test_file', type=str, help='测试文件的路径。')
parser.add_argument('zip_file', type=str, help='压缩包的路径。')
parser.add_argument('overall_path', type=str, help='overall文件的基础路径和文件名前缀。')
parser.add_argument('base_data_path', type=str, help='基准文件的基础路径和文件名前缀。')
parser.add_argument('--badcase_path', type=str, default=None, help='badcase文件的基础路径和文件名前缀(可选)。')
parser.add_argument('--s3_bucket_name', type=str, help='S3桶名称。', default=None)
parser.add_argument('--s3_file_directory', type=str, help='S3上的文件保存目录。', default=None)
parser.add_argument('--AWS_ACCESS_KEY', type=str, help='AWS访问密钥。', default=None)
parser.add_argument('--AWS_SECRET_KEY', type=str, help='AWS秘密密钥。', default=None)
parser.add_argument('--END_POINT_URL', type=str, help='AWS端点URL。', default=None)
args = parser.parse_args()
main(args.standard_file, args.test_file, args.zip_file, args.overall_path, args.base_data_path,
badcase_path=args.badcase_path, s3_bucket_name=args.s3_bucket_name,
s3_file_directory=args.s3_file_directory, aws_access_key=args.AWS_ACCESS_KEY,
aws_secret_key=args.AWS_SECRET_KEY, end_point_url=args.END_POINT_URL)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment