Commit a3dc2cba authored by 赵小蒙's avatar 赵小蒙

remove spacy dependence

parent a288b572
...@@ -3,10 +3,10 @@ ...@@ -3,10 +3,10 @@
https://aicarrier.feishu.cn/wiki/YLOPwo1PGiwFRdkwmyhcZmr0n3d https://aicarrier.feishu.cn/wiki/YLOPwo1PGiwFRdkwmyhcZmr0n3d
""" """
import re import re
from magic_pdf.libs.nlp_utils import NLPModels # from magic_pdf.libs.nlp_utils import NLPModels
__NLP_MODEL = NLPModels() # __NLP_MODEL = NLPModels()
def check_1(spans, cur_span_i): def check_1(spans, cur_span_i):
"""寻找前一个char,如果是句号,逗号,那么就是角标""" """寻找前一个char,如果是句号,逗号,那么就是角标"""
...@@ -20,68 +20,68 @@ def check_1(spans, cur_span_i): ...@@ -20,68 +20,68 @@ def check_1(spans, cur_span_i):
return False return False
def check_2(spans, cur_span_i): # def check_2(spans, cur_span_i):
"""检查前面一个span的最后一个单词,如果长度大于5,全都是字母,并且不含大写,就是角标""" # """检查前面一个span的最后一个单词,如果长度大于5,全都是字母,并且不含大写,就是角标"""
pattern = r'\b[A-Z]\.\s[A-Z][a-z]*\b' # 形如A. Bcde, L. Bcde, 人名的缩写 # pattern = r'\b[A-Z]\.\s[A-Z][a-z]*\b' # 形如A. Bcde, L. Bcde, 人名的缩写
#
if cur_span_i==0 and len(spans)>1: # if cur_span_i==0 and len(spans)>1:
next_span = spans[cur_span_i+1] # next_span = spans[cur_span_i+1]
next_txt = "".join([c['c'] for c in next_span['chars']]) # next_txt = "".join([c['c'] for c in next_span['chars']])
result = __NLP_MODEL.detect_entity_catgr_using_nlp(next_txt) # result = __NLP_MODEL.detect_entity_catgr_using_nlp(next_txt)
if result in ["PERSON", "GPE", "ORG"]: # if result in ["PERSON", "GPE", "ORG"]:
return True # return True
#
if re.findall(pattern, next_txt): # if re.findall(pattern, next_txt):
return True # return True
#
return False # 不是角标 # return False # 不是角标
elif cur_span_i==0 and len(spans)==1: # 角标占用了整行?谨慎删除 # elif cur_span_i==0 and len(spans)==1: # 角标占用了整行?谨慎删除
return False # return False
#
# 如果这个span是最后一个span, # # 如果这个span是最后一个span,
if cur_span_i==len(spans)-1: # if cur_span_i==len(spans)-1:
pre_span = spans[cur_span_i-1] # pre_span = spans[cur_span_i-1]
pre_txt = "".join([c['c'] for c in pre_span['chars']]) # pre_txt = "".join([c['c'] for c in pre_span['chars']])
pre_word = pre_txt.split(' ')[-1] # pre_word = pre_txt.split(' ')[-1]
result = __NLP_MODEL.detect_entity_catgr_using_nlp(pre_txt) # result = __NLP_MODEL.detect_entity_catgr_using_nlp(pre_txt)
if result in ["PERSON", "GPE", "ORG"]: # if result in ["PERSON", "GPE", "ORG"]:
return True # return True
#
if re.findall(pattern, pre_txt): # if re.findall(pattern, pre_txt):
return True # return True
#
return len(pre_word) > 5 and pre_word.isalpha() and pre_word.islower() # return len(pre_word) > 5 and pre_word.isalpha() and pre_word.islower()
else: # 既不是第一个span,也不是最后一个span,那么此时检查一下这个角标距离前后哪个单词更近就属于谁的角标 # else: # 既不是第一个span,也不是最后一个span,那么此时检查一下这个角标距离前后哪个单词更近就属于谁的角标
pre_span = spans[cur_span_i-1] # pre_span = spans[cur_span_i-1]
next_span = spans[cur_span_i+1] # next_span = spans[cur_span_i+1]
cur_span = spans[cur_span_i] # cur_span = spans[cur_span_i]
# 找到前一个和后一个span里的距离最近的单词 # # 找到前一个和后一个span里的距离最近的单词
pre_distance = 10000 # 一个很大的数 # pre_distance = 10000 # 一个很大的数
next_distance = 10000 # 一个很大的数 # next_distance = 10000 # 一个很大的数
for c in pre_span['chars'][::-1]: # for c in pre_span['chars'][::-1]:
if c['c'].isalpha(): # if c['c'].isalpha():
pre_distance = cur_span['bbox'][0] - c['bbox'][2] # pre_distance = cur_span['bbox'][0] - c['bbox'][2]
break # break
for c in next_span['chars']: # for c in next_span['chars']:
if c['c'].isalpha(): # if c['c'].isalpha():
next_distance = c['bbox'][0] - cur_span['bbox'][2] # next_distance = c['bbox'][0] - cur_span['bbox'][2]
break # break
#
if pre_distance<next_distance: # if pre_distance<next_distance:
belong_to_span = pre_span # belong_to_span = pre_span
else: # else:
belong_to_span = next_span # belong_to_span = next_span
#
txt = "".join([c['c'] for c in belong_to_span['chars']]) # txt = "".join([c['c'] for c in belong_to_span['chars']])
pre_word = txt.split(' ')[-1] # pre_word = txt.split(' ')[-1]
result = __NLP_MODEL.detect_entity_catgr_using_nlp(txt) # result = __NLP_MODEL.detect_entity_catgr_using_nlp(txt)
if result in ["PERSON", "GPE", "ORG"]: # if result in ["PERSON", "GPE", "ORG"]:
return True # return True
#
if re.findall(pattern, txt): # if re.findall(pattern, txt):
return True # return True
#
return len(pre_word) > 5 and pre_word.isalpha() and pre_word.islower() # return len(pre_word) > 5 and pre_word.isalpha() and pre_word.islower()
def check_3(spans, cur_span_i): def check_3(spans, cur_span_i):
...@@ -143,7 +143,10 @@ def remove_citation_marker(with_char_text_blcoks): ...@@ -143,7 +143,10 @@ def remove_citation_marker(with_char_text_blcoks):
3. 上标里有数字和逗号或者数字+星号的组合,方括号,一般肯定就是角标了 3. 上标里有数字和逗号或者数字+星号的组合,方括号,一般肯定就是角标了
4. 这个角标属于前文还是后文要根据距离来判断,如果距离前面的文本太近,那么就是前面的角标,否则就是后面的角标 4. 这个角标属于前文还是后文要根据距离来判断,如果距离前面的文本太近,那么就是前面的角标,否则就是后面的角标
""" """
if check_1(line['spans'], i) or check_2(line['spans'], i) or check_3(line['spans'], i): if (check_1(line['spans'], i) or
# check_2(line['spans'], i) or
check_3(line['spans'], i)
):
"""删除掉这个角标:删除这个span, 同时还要更新line的text""" """删除掉这个角标:删除这个span, 同时还要更新line的text"""
span_to_del.append(span) span_to_del.append(span)
if len(span_to_del)>0: if len(span_to_del)>0:
......
...@@ -9,11 +9,8 @@ numpy>=1.21.6 ...@@ -9,11 +9,8 @@ numpy>=1.21.6
pandas>=1.3.5 pandas>=1.3.5
pycld2>=0.41 pycld2>=0.41
regex>=2023.12.25 regex>=2023.12.25
spacy>=3.7.4
termcolor>=2.4.0 termcolor>=2.4.0
wordninja>=2.0.0 wordninja>=2.0.0
en_core_web_sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl
zh_core_web_sm @ https://github.com/explosion/spacy-models/releases/download/zh_core_web_sm-3.7.0/zh_core_web_sm-3.7.0-py3-none-any.whl
scikit-learn>=1.0.2 scikit-learn>=1.0.2
nltk==3.8.1 nltk==3.8.1
s3pathlib>=2.1.1 s3pathlib>=2.1.1
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment