cls_tokens=self.cls_token.expand(batch_size,-1,-1)# stole cls_tokens impl from Phil Wang, thanks
ifself.pos_embedisnotNoneandself.detection:
cls_tokens=cls_tokens+self.pos_embed[:,:1,:]
x=torch.cat((cls_tokens,x),dim=1)
ifself.pos_embedisnotNoneandnotself.detection:
x=x+self.pos_embed
x=self.pos_drop(x)
x=self.norm(x)
returnx
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
defforward(
self,
input_ids=None,
bbox=None,
attention_mask=None,
token_type_ids=None,
valid_span=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
images=None,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
img: img for OCR, support ndarray, img_path and list or ndarray
det: use text detection or not. If False, only rec will be exec. Default is True
rec: use text recognition or not. If False, only det will be exec. Default is True
cls: use angle classifier or not. Default is True. If True, the text with rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance. Text with rotation of 90 or 270 degrees can be recognized even if cls=False.
bin: binarize image to black and white. Default is False.
inv: invert image colors. Default is False.
alpha_color: set RGB color Tuple for transparent parts replacement. Default is pure white.
"""
assertisinstance(img,(np.ndarray,list,str,bytes))
ifisinstance(img,list)anddet==True:
logger.error('When input a list of images, det must be false')
exit(0)
ifcls==Trueandself.use_angle_cls==False:
logger.warning(
'Since the angle classifier is not initialized, it will not be used during the forward process'