Commit 1efebe42 authored by myhloli's avatar myhloli

refactor(pdf_parse_union): integrate LayoutLMv3 for block orderingReplace the...

refactor(pdf_parse_union): integrate LayoutLMv3 for block orderingReplace the heuristic-based block ordering algorithm with LayoutLMv3 model predictions toimprove the accuracy of block ordering on PDF pages. Additionally, refactor the span
handling during block filling to ensure spans are correctly assigned.

- Introduce LayoutLMv3ForTokenClassification from 'hantian/layoutreader' to predict block
  order.
- Implement span replacement strategy to use pymu spans for non-OCR content.
- Enhance cleanup process to free GPU memory more effectively after model use.
- Adjust block ordering logic to use median line index for text, title, and interline equation blocks.
- Refactor page parsing core logic for better maintainability.

BREAKING CHANGE: The integration of LayoutLMv3 changes the internal block handling and
ordering mechanism, which may affect downstream systems relying on the previous
implementation. Ensure to test thoroughly before deployment.
parent 36220d69
from magic_pdf.pdf_parse_union_core import pdf_parse_union
from magic_pdf.pdf_parse_union_core_v2 import pdf_parse_union
def parse_pdf_by_ocr(pdf_bytes,
......
from magic_pdf.pdf_parse_union_core import pdf_parse_union
from magic_pdf.pdf_parse_union_core_v2 import pdf_parse_union
def parse_pdf_by_txt(
......
import statistics
import time
from loguru import logger
from typing import List
import torch
from magic_pdf.libs.commons import fitz, get_delta_time
from magic_pdf.libs.convert_utils import dict_to_list
from magic_pdf.libs.drop_reason import DropReason
from magic_pdf.libs.hash_utils import compute_md5
from magic_pdf.libs.local_math import float_equal
from magic_pdf.libs.ocr_content_type import ContentType
from magic_pdf.model.magic_model import MagicModel
from magic_pdf.para.para_split_v2 import para_split
from magic_pdf.pre_proc.citationmarker_remove import remove_citation_marker
from magic_pdf.pre_proc.construct_page_dict import ocr_construct_page_component_v2
from magic_pdf.pre_proc.cut_image import ocr_cut_image_and_table
from magic_pdf.pre_proc.equations_replace import remove_chars_in_text_blocks, replace_equations_in_textblock, \
combine_chars_to_pymudict
from magic_pdf.pre_proc.ocr_detect_all_bboxes import ocr_prepare_bboxes_for_layout_split_v2
from magic_pdf.pre_proc.ocr_dict_merge import fill_spans_in_blocks, fix_block_spans, fix_discarded_block
from magic_pdf.pre_proc.ocr_span_list_modify import remove_overlaps_min_spans, get_qa_need_list_v2, \
remove_overlaps_low_confidence_spans
from magic_pdf.pre_proc.resolve_bbox_conflict import check_useful_block_horizontal_overlap
def remove_horizontal_overlap_block_which_smaller(all_bboxes):
useful_blocks = []
for bbox in all_bboxes:
useful_blocks.append({
"bbox": bbox[:4]
})
is_useful_block_horz_overlap, smaller_bbox, bigger_bbox = check_useful_block_horizontal_overlap(useful_blocks)
if is_useful_block_horz_overlap:
logger.warning(
f"skip this page, reason: {DropReason.USEFUL_BLOCK_HOR_OVERLAP}, smaller bbox is {smaller_bbox}, bigger bbox is {bigger_bbox}")
for bbox in all_bboxes.copy():
if smaller_bbox == bbox[:4]:
all_bboxes.remove(bbox)
return is_useful_block_horz_overlap, all_bboxes
def __replace_STX_ETX(text_str:str):
""" Replace \u0002 and \u0003, as these characters become garbled when extracted using pymupdf. In fact, they were originally quotation marks.
Drawback: This issue is only observed in English text; it has not been found in Chinese text so far.
Args:
text_str (str): raw text
Returns:
_type_: replaced text
"""
if text_str:
s = text_str.replace('\u0002', "'")
s = s.replace("\u0003", "'")
return s
return text_str
def txt_spans_extract(pdf_page, inline_equations, interline_equations):
text_raw_blocks = pdf_page.get_text("dict", flags=fitz.TEXTFLAGS_TEXT)["blocks"]
char_level_text_blocks = pdf_page.get_text("rawdict", flags=fitz.TEXTFLAGS_TEXT)[
"blocks"
]
text_blocks = combine_chars_to_pymudict(text_raw_blocks, char_level_text_blocks)
text_blocks = replace_equations_in_textblock(
text_blocks, inline_equations, interline_equations
)
text_blocks = remove_citation_marker(text_blocks)
text_blocks = remove_chars_in_text_blocks(text_blocks)
spans = []
for v in text_blocks:
for line in v["lines"]:
for span in line["spans"]:
bbox = span["bbox"]
if float_equal(bbox[0], bbox[2]) or float_equal(bbox[1], bbox[3]):
continue
if span.get('type') not in (ContentType.InlineEquation, ContentType.InterlineEquation):
spans.append(
{
"bbox": list(span["bbox"]),
"content": __replace_STX_ETX(span["text"]),
"type": ContentType.Text,
"score": 1.0,
}
)
return spans
def replace_text_span(pymu_spans, ocr_spans):
return list(filter(lambda x: x["type"] != ContentType.Text, ocr_spans)) + pymu_spans
def do_predict(boxes: List[List[int]]) -> List[int]:
from transformers import LayoutLMv3ForTokenClassification
from magic_pdf.v3.helpers import prepare_inputs, boxes2inputs, parse_logits
model = LayoutLMv3ForTokenClassification.from_pretrained("hantian/layoutreader")
model.to("cuda")
inputs = boxes2inputs(boxes)
inputs = prepare_inputs(inputs, model)
logits = model(**inputs).logits.cpu().squeeze(0)
return parse_logits(logits, len(boxes))
def parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode):
need_drop = False
drop_reason = []
'''从magic_model对象中获取后面会用到的区块信息'''
img_blocks = magic_model.get_imgs(page_id)
table_blocks = magic_model.get_tables(page_id)
discarded_blocks = magic_model.get_discarded(page_id)
text_blocks = magic_model.get_text_blocks(page_id)
title_blocks = magic_model.get_title_blocks(page_id)
inline_equations, interline_equations, interline_equation_blocks = magic_model.get_equations(page_id)
page_w, page_h = magic_model.get_page_size(page_id)
spans = magic_model.get_all_spans(page_id)
'''根据parse_mode,构造spans'''
if parse_mode == "txt":
"""ocr 中文本类的 span 用 pymu spans 替换!"""
pymu_spans = txt_spans_extract(
pdf_docs[page_id], inline_equations, interline_equations
)
spans = replace_text_span(pymu_spans, spans)
elif parse_mode == "ocr":
pass
else:
raise Exception("parse_mode must be txt or ocr")
'''删除重叠spans中置信度较低的那些'''
spans, dropped_spans_by_confidence = remove_overlaps_low_confidence_spans(spans)
'''删除重叠spans中较小的那些'''
spans, dropped_spans_by_span_overlap = remove_overlaps_min_spans(spans)
'''对image和table截图'''
spans = ocr_cut_image_and_table(spans, pdf_docs[page_id], page_id, pdf_bytes_md5, imageWriter)
'''将所有区块的bbox整理到一起'''
# interline_equation_blocks参数不够准,后面切换到interline_equations上
interline_equation_blocks = []
if len(interline_equation_blocks) > 0:
all_bboxes, all_discarded_blocks, drop_reasons = ocr_prepare_bboxes_for_layout_split_v2(
img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
interline_equation_blocks, page_w, page_h)
else:
all_bboxes, all_discarded_blocks, drop_reasons = ocr_prepare_bboxes_for_layout_split_v2(
img_blocks, table_blocks, discarded_blocks, text_blocks, title_blocks,
interline_equations, page_w, page_h)
if len(drop_reasons) > 0:
need_drop = True
drop_reason.append(DropReason.OVERLAP_BLOCKS_CAN_NOT_SEPARATION)
'''先处理不需要排版的discarded_blocks'''
discarded_block_with_spans, spans = fill_spans_in_blocks(all_discarded_blocks, spans, 0.4)
fix_discarded_blocks = fix_discarded_block(discarded_block_with_spans)
'''如果当前页面没有bbox则跳过'''
if len(all_bboxes) == 0:
logger.warning(f"skip this page, not found useful bbox, page_id: {page_id}")
return ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [],
[], [], interline_equations, fix_discarded_blocks,
need_drop, drop_reason)
'''将span填入排好序的blocks中'''
block_with_spans, spans = fill_spans_in_blocks(all_bboxes, spans, 0.3)
'''对block进行fix操作'''
fix_blocks = fix_block_spans(block_with_spans, img_blocks, table_blocks)
'''获取所有line并对line排序'''
page_line_list = []
for block in fix_blocks:
if block['type'] == 'text' or block['type'] == 'title' or block['type'] == 'interline_equation':
for line in block['lines']:
bbox = line['bbox']
page_line_list.append(bbox)
elif block['type'] == 'table' or block['type'] == 'image': # 简单的把表和图都当成一个line处理
bbox = block['bbox']
page_line_list.append(bbox)
# 使用layoutreader排序
x_scale = 1000.0 / page_w
y_scale = 1000.0 / page_h
boxes = []
logger.info(f"Scale: {x_scale}, {y_scale}, Boxes len: {len(page_line_list)}")
for left, top, right, bottom in page_line_list:
left = round(left * x_scale)
top = round(top * y_scale)
right = round(right * x_scale)
bottom = round(bottom * y_scale)
assert (
1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0
), f"Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}"
boxes.append([left, top, right, bottom])
layoutreader_start = time.time()
orders = do_predict(boxes)
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# print(orders)
logger.info(f"layoutreader cost time{time.time() - layoutreader_start}")
sorted_bboxes = [page_line_list[i] for i in orders]
'''根据line的中位数算block的序列关系'''
for line_index, bbox in enumerate(sorted_bboxes):
for block in fix_blocks:
if block['type'] == 'text' or block['type'] == 'title' or block['type'] == 'interline_equation':
line_index_list = []
for line in block['lines']:
if line['bbox'] == bbox:
line['index'] = line_index
line_index_list.append(line_index)
median_value = statistics.median(line_index_list)
block['index'] = median_value
elif block['type'] == 'table' or block['type'] == 'image':
if block['bbox'] == bbox:
block['index'] = line_index
'''重排block'''
sorted_blocks = sorted(fix_blocks, key=lambda b: b['index'])
'''获取QA需要外置的list'''
images, tables, interline_equations = get_qa_need_list_v2(sorted_blocks)
'''构造pdf_info_dict'''
page_info = ocr_construct_page_component_v2(sorted_blocks, [], page_id, page_w, page_h, [],
images, tables, interline_equations, fix_discarded_blocks,
need_drop, drop_reason)
return page_info
def clean_memory():
import gc
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def pdf_parse_union(pdf_bytes,
model_list,
imageWriter,
parse_mode,
start_page_id=0,
end_page_id=None,
debug_mode=False,
):
pdf_bytes_md5 = compute_md5(pdf_bytes)
pdf_docs = fitz.open("pdf", pdf_bytes)
'''初始化空的pdf_info_dict'''
pdf_info_dict = {}
'''用model_list和docs对象初始化magic_model'''
magic_model = MagicModel(model_list, pdf_docs)
'''根据输入的起始范围解析pdf'''
# end_page_id = end_page_id if end_page_id else len(pdf_docs) - 1
end_page_id = end_page_id if end_page_id is not None and end_page_id >= 0 else len(pdf_docs) - 1
if end_page_id > len(pdf_docs) - 1:
logger.warning("end_page_id is out of range, use pdf_docs length")
end_page_id = len(pdf_docs) - 1
'''初始化启动时间'''
start_time = time.time()
for page_id, page in enumerate(pdf_docs):
'''debug时输出每页解析的耗时'''
if debug_mode:
time_now = time.time()
logger.info(
f"page_id: {page_id}, last_page_cost_time: {get_delta_time(start_time)}"
)
start_time = time_now
'''解析pdf中的每一页'''
if start_page_id <= page_id <= end_page_id:
page_info = parse_page_core(pdf_docs, magic_model, page_id, pdf_bytes_md5, imageWriter, parse_mode)
else:
page_w = page.rect.width
page_h = page.rect.height
page_info = ocr_construct_page_component_v2([], [], page_id, page_w, page_h, [],
[], [], [], [],
True, "skip page")
pdf_info_dict[f"page_{page_id}"] = page_info
"""分段"""
para_split(pdf_info_dict, debug_mode=debug_mode)
"""dict转list"""
pdf_info_list = dict_to_list(pdf_info_dict)
new_pdf_info_dict = {
"pdf_info": pdf_info_list,
}
clean_memory()
return new_pdf_info_dict
if __name__ == '__main__':
pass
......@@ -60,6 +60,59 @@ def ocr_prepare_bboxes_for_layout_split(img_blocks, table_blocks, discarded_bloc
return all_bboxes, all_discarded_blocks, drop_reasons
def ocr_prepare_bboxes_for_layout_split_v2(img_blocks, table_blocks, discarded_blocks, text_blocks,
title_blocks, interline_equation_blocks, page_w, page_h):
all_bboxes = []
all_discarded_blocks = []
for image in img_blocks:
x0, y0, x1, y1 = image['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Image, None, None, None, None, image["score"]])
for table in table_blocks:
x0, y0, x1, y1 = table['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Table, None, None, None, None, table["score"]])
for text in text_blocks:
x0, y0, x1, y1 = text['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Text, None, None, None, None, text["score"]])
for title in title_blocks:
x0, y0, x1, y1 = title['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Title, None, None, None, None, title["score"]])
for interline_equation in interline_equation_blocks:
x0, y0, x1, y1 = interline_equation['bbox']
all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.InterlineEquation, None, None, None, None, interline_equation["score"]])
'''block嵌套问题解决'''
'''文本框与标题框重叠,优先信任文本框'''
all_bboxes = fix_text_overlap_title_blocks(all_bboxes)
'''任何框体与舍弃框重叠,优先信任舍弃框'''
all_bboxes = remove_need_drop_blocks(all_bboxes, discarded_blocks)
# interline_equation 与title或text框冲突的情况,分两种情况处理
'''interline_equation框与文本类型框iou比较接近1的时候,信任行间公式框'''
all_bboxes = fix_interline_equation_overlap_text_blocks_with_hi_iou(all_bboxes)
'''interline_equation框被包含在文本类型框内,且interline_equation比文本区块小很多时信任文本框,这时需要舍弃公式框'''
# 通过后续大框套小框逻辑删除
'''discarded_blocks中只保留宽度超过1/3页面宽度的,高度超过10的,处于页面下半50%区域的(限定footnote)'''
for discarded in discarded_blocks:
x0, y0, x1, y1 = discarded['bbox']
all_discarded_blocks.append([x0, y0, x1, y1, None, None, None, BlockType.Discarded, None, None, None, None, discarded["score"]])
# 将footnote加入到all_bboxes中,用来计算layout
# if (x1 - x0) > (page_w / 3) and (y1 - y0) > 10 and y0 > (page_h / 2):
# all_bboxes.append([x0, y0, x1, y1, None, None, None, BlockType.Footnote, None, None, None, None, discarded["score"]])
'''经过以上处理后,还存在大框套小框的情况,则删除小框'''
all_bboxes = remove_overlaps_min_blocks(all_bboxes)
all_discarded_blocks = remove_overlaps_min_blocks(all_discarded_blocks)
'''将剩余的bbox做分离处理,防止后面分layout时出错'''
all_bboxes, drop_reasons = remove_overlap_between_bbox_for_block(all_bboxes)
return all_bboxes, all_discarded_blocks, drop_reasons
def fix_interline_equation_overlap_text_blocks_with_hi_iou(all_bboxes):
# 先提取所有text和interline block
text_blocks = []
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment